1/2x+1/4=1/4x-6

Simple and best practice solution for 1/2x+1/4=1/4x-6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x+1/4=1/4x-6 equation:



1/2x+1/4=1/4x-6
We move all terms to the left:
1/2x+1/4-(1/4x-6)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 4x-6)!=0
x∈R
We get rid of parentheses
1/2x-1/4x+6+1/4=0
We calculate fractions
64x/128x^2+(-2x)/128x^2+2x/128x^2+6=0
We multiply all the terms by the denominator
64x+(-2x)+2x+6*128x^2=0
We add all the numbers together, and all the variables
66x+(-2x)+6*128x^2=0
Wy multiply elements
768x^2+66x+(-2x)=0
We get rid of parentheses
768x^2+66x-2x=0
We add all the numbers together, and all the variables
768x^2+64x=0
a = 768; b = 64; c = 0;
Δ = b2-4ac
Δ = 642-4·768·0
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4096}=64$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-64}{2*768}=\frac{-128}{1536} =-1/12 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+64}{2*768}=\frac{0}{1536} =0 $

See similar equations:

| 15^2m-3=250 | | 6r–2r+4r=44+4 | | 6^n+1=3 | | 30x-2x2=2 | | 7-3x+9=4x-5 | | (-5a/3)=5 | | (-x-3)-(5x+2)=0 | | 17+3(p-5)=8 | | 21(t)=-16t2+40t+5 | | 3(x-2)+1=2(x-4)+x+22 | | 5/p-3/4=-7/5+2/4p | | X^2-13x-37=0 | | 3x+1=4x2 | | 200=1.5x-(700+1.25x) | | -13=z/2 | | 5x-15+2x-43=180 | | 3(x-2)=-6(x+4)+42 | | 5x-15+2x-42=90 | | -4=7+n | | 5x-15)+(2x-42)=90 | | 6w+12=54 | | 11=d-7 | | 3=(8n-6)+5n | | 7(x-4)=-7(x+1)+22 | | 0.5x+0.6=0.9x-0.2 | | 15+4n=27 | | 1008=(2x-4)(x+6) | | 4x-15-6x+5=23-3x-3-5x | | 3x+17+2x-3=3x+30 | | (20x-4)÷4=-6 | | 4/5y+20=5y-22 | | 8x=13/5 |

Equations solver categories