1/2x+1/4=1/6x+3

Simple and best practice solution for 1/2x+1/4=1/6x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x+1/4=1/6x+3 equation:



1/2x+1/4=1/6x+3
We move all terms to the left:
1/2x+1/4-(1/6x+3)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 6x+3)!=0
x∈R
We get rid of parentheses
1/2x-1/6x-3+1/4=0
We calculate fractions
72x^2/192x^2+96x/192x^2+(-32x)/192x^2-3=0
We multiply all the terms by the denominator
72x^2+96x+(-32x)-3*192x^2=0
Wy multiply elements
72x^2-576x^2+96x+(-32x)=0
We get rid of parentheses
72x^2-576x^2+96x-32x=0
We add all the numbers together, and all the variables
-504x^2+64x=0
a = -504; b = 64; c = 0;
Δ = b2-4ac
Δ = 642-4·(-504)·0
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4096}=64$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-64}{2*-504}=\frac{-128}{-1008} =8/63 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+64}{2*-504}=\frac{0}{-1008} =0 $

See similar equations:

| 5m-7=32 | | 5f+6=2f | | 2(4y+8)=20 | | 6x^+2x-8=0 | | x+(x+14)=17 | | 3z/7-4=-8 | | |4x-5|=2x+3 | | y=3E-05X+0,0194 | | 2(3x-5)-11=4+x | | y=3E-05X+0.0194 | | b/6+1=10 | | 8n+7=6n-5 | | 2*(x+3)=-4*(2x-2) | | 4k-2=20 | | (5x-6)(2x+5)=0 | | y=0.0194+3E-5X | | 3j-1=20 | | 3i-1=14 | | X+5=-4x-13 | | 6+3(x+3)-4x=0 | | 2h-3=7 | | -6x+3(-7x+18)=189 | | 2g-1=17 | | 4k+159=180 | | -5x–15=0 | | 13x-4=16-7x | | 2x+1/3-x-3/4=x/2 | | 1.8/48=x/120 | | 2(-1+3x=3(x+-1) | | 4e+7=15 | | 3z/8+7=0 | | 2,7=4/x |

Equations solver categories