1/2x+10+3/2x=X+1

Simple and best practice solution for 1/2x+10+3/2x=X+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x+10+3/2x=X+1 equation:



1/2x+10+3/2x=x+1
We move all terms to the left:
1/2x+10+3/2x-(x+1)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We get rid of parentheses
1/2x+3/2x-x-1+10=0
We multiply all the terms by the denominator
-x*2x-1*2x+10*2x+1+3=0
We add all the numbers together, and all the variables
-x*2x-1*2x+10*2x+4=0
Wy multiply elements
-2x^2-2x+20x+4=0
We add all the numbers together, and all the variables
-2x^2+18x+4=0
a = -2; b = 18; c = +4;
Δ = b2-4ac
Δ = 182-4·(-2)·4
Δ = 356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{356}=\sqrt{4*89}=\sqrt{4}*\sqrt{89}=2\sqrt{89}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{89}}{2*-2}=\frac{-18-2\sqrt{89}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{89}}{2*-2}=\frac{-18+2\sqrt{89}}{-4} $

See similar equations:

| -8+5u=-23 | | 5(4a+10)=20a+5 | | 12c+45=2c+25 | | v/6-2.7=-21.9 | | 5(4a+10)=20a+50 | | -6=2x=1/3(2x-9) | | 3/4=21/b | | 8x-10+3x+90=x | | 112+13x=21x | | 8x-10+3x+90=360 | | ⅔(n+9)=⅚n | | 1/15=3/p | | 3p−2=54 | | 15x+-30=180 | | 5(4a+10)=20a+ | | -16x^2+128x+1.5=0 | | 5t-72=28 | | 2/3n+4=–-26 | | 51=4k | | (27+n)+(n+n)=57 | | 3/544/55x-4=5+11/55x4/53/5 | | -18+2/7z=3 | | 5(3g-2)=10(2g-2) | | 5(3x-0.4)=28 | | 6x+18=3x+8 | | y=-1/7(2)-7 | | 13y=32+9y | | y=-1/7(2 | | 7x+10=67 | | y+1.19=5.95 | | 48a=4.8 | | |6x-7|=|3+2x| |

Equations solver categories