1/2x+16=1/4x+32

Simple and best practice solution for 1/2x+16=1/4x+32 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x+16=1/4x+32 equation:



1/2x+16=1/4x+32
We move all terms to the left:
1/2x+16-(1/4x+32)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 4x+32)!=0
x∈R
We get rid of parentheses
1/2x-1/4x-32+16=0
We calculate fractions
4x/8x^2+(-2x)/8x^2-32+16=0
We add all the numbers together, and all the variables
4x/8x^2+(-2x)/8x^2-16=0
We multiply all the terms by the denominator
4x+(-2x)-16*8x^2=0
Wy multiply elements
-128x^2+4x+(-2x)=0
We get rid of parentheses
-128x^2+4x-2x=0
We add all the numbers together, and all the variables
-128x^2+2x=0
a = -128; b = 2; c = 0;
Δ = b2-4ac
Δ = 22-4·(-128)·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2}{2*-128}=\frac{-4}{-256} =1/64 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2}{2*-128}=\frac{0}{-256} =0 $

See similar equations:

| 2e=23 | | 27x+14=113 | | -18=-3/2w4 | | 6z=4(1/2z-3) | | 8x+25=5 | | 3(8y+6)=-34 | | 3(4m+5)=2m−5 | | 4+h/3=9 | | −4(n−6)=12-4n-6=12 | | 1/4(x+1)=8 | | -6=-4+n | | 5(5^3-x)=20 | | 2×14^x+3×49^x-4^x=0 | | 3x-2=8x=100 | | 74-12n=52 | | X(.0825)+x=18032 | | -9(7-5k)=24 | | 12x(24x+7)=37 | | 1/4(8x-2)=3x+5 | | 3(x-1)-x=3+2(x-3 | | -11=v/2 | | 4(3+x)=3643+x=36. | | -5(3x+6=-3(4x-2) | | 26x+14-3x=3x-14 | | 3x+10=2x+19 | | |x-4|=-3 | | 22=7h-6h | | 3(2w−7)=3 | | 2x-7/3=0 | | 9x+4=-3+6x+16 | | -9(-3=+2m) | | 4(1+x)=20. |

Equations solver categories