1/2x+16=2/3x-4

Simple and best practice solution for 1/2x+16=2/3x-4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x+16=2/3x-4 equation:



1/2x+16=2/3x-4
We move all terms to the left:
1/2x+16-(2/3x-4)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 3x-4)!=0
x∈R
We get rid of parentheses
1/2x-2/3x+4+16=0
We calculate fractions
3x/6x^2+(-4x)/6x^2+4+16=0
We add all the numbers together, and all the variables
3x/6x^2+(-4x)/6x^2+20=0
We multiply all the terms by the denominator
3x+(-4x)+20*6x^2=0
Wy multiply elements
120x^2+3x+(-4x)=0
We get rid of parentheses
120x^2+3x-4x=0
We add all the numbers together, and all the variables
120x^2-1x=0
a = 120; b = -1; c = 0;
Δ = b2-4ac
Δ = -12-4·120·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-1}{2*120}=\frac{0}{240} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+1}{2*120}=\frac{2}{240} =1/120 $

See similar equations:

| x=3.75=111/3 | | -8+2v=-4 | | 3x-4=7x-4 | | -3(t-2)+6t=9t-1 | | 6×0=7-4y | | 5m+10=-4+7m | | ​5​​1​​(25−5k)=21−3(k−4) | | 8x+45=-3 | | 2/3c-7=1 | | 10+b=-4b | | 107-w=206 | | 8-2z+12=-9z+21+8 | | 8+10v=6v | | 3÷x=10÷3 | | 3x+4+49=11x-17 | | |x|=67.3 | | (3•6/2)v+10=3^2v+9 | | -3(-8u+4)-7u=3(u-1)-2 | | 56=4w+8 | | 0=1/10x=10 | | 3x+4+11x-17=49 | | -3(t+-4)+7t=9t+-9 | | -6+6z=7z | | -3=-10x+20 | | -54+8x=103x+17 | | 2(n-10)=2n-8 | | -7-48n+48=-2n+5+7 | | -2(3x-1)=-10x+10+4x | | 7+4a=10+a | | -3=10x+20 | | p^2+1.75p-0.5=0 | | -3x-4(4-3x)=3(x-3)-31 |

Equations solver categories