If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/2x+2/3-1/6x=5/12
We move all terms to the left:
1/2x+2/3-1/6x-(5/12)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 6x!=0We add all the numbers together, and all the variables
x!=0/6
x!=0
x∈R
1/2x-1/6x+2/3-(+5/12)=0
We get rid of parentheses
1/2x-1/6x+2/3-5/12=0
We calculate fractions
(-1080x^2)/1296x^2+1728x^2/1296x^2+648x/1296x^2+(-216x)/1296x^2=0
We multiply all the terms by the denominator
(-1080x^2)+1728x^2+648x+(-216x)=0
We add all the numbers together, and all the variables
1728x^2+(-1080x^2)+648x+(-216x)=0
We get rid of parentheses
1728x^2-1080x^2+648x-216x=0
We add all the numbers together, and all the variables
648x^2+432x=0
a = 648; b = 432; c = 0;
Δ = b2-4ac
Δ = 4322-4·648·0
Δ = 186624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{186624}=432$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(432)-432}{2*648}=\frac{-864}{1296} =-2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(432)+432}{2*648}=\frac{0}{1296} =0 $
| M=6/5a+25 | | -1/6x+3=7 | | 1/x+2/3-1/6x=5/12 | | 8t-19-20+3=180 | | —2.5b=20.5 | | 4x+34=34-8 | | 5x+x+6=14 | | 18p+13+82+67=180 | | -40+x/3=-8 | | x-10=59x/10 | | -2+3=-4x | | -96-2x=66-11x | | 2x+4/6-2=4 | | 10b+4+3-7=180 | | x-8=4-2(x-3) | | x/5+4=-8 | | x-8=4-2(x-3)= | | 9x+1=7x-9= | | 20+5=t | | 2z+20+120+14=180 | | 6+(8x+12)=0 | | 7t+19=5 | | 20+(-5)=t | | -5(3-q)+5=5q-11 | | x+2x+12=x | | j-17=17 | | 2m-(m+1)=8 | | x-10=6x/10 | | 14z-47-19-6=180 | | -7w/9=49 | | -9+2b=3+4b | | 7+2x=12x |