1/2x+3+3/2x-4=x+1

Simple and best practice solution for 1/2x+3+3/2x-4=x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x+3+3/2x-4=x+1 equation:



1/2x+3+3/2x-4=x+1
We move all terms to the left:
1/2x+3+3/2x-4-(x+1)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
1/2x+3/2x-(x+1)-1=0
We get rid of parentheses
1/2x+3/2x-x-1-1=0
We multiply all the terms by the denominator
-x*2x-1*2x-1*2x+1+3=0
We add all the numbers together, and all the variables
-x*2x-1*2x-1*2x+4=0
Wy multiply elements
-2x^2-2x-2x+4=0
We add all the numbers together, and all the variables
-2x^2-4x+4=0
a = -2; b = -4; c = +4;
Δ = b2-4ac
Δ = -42-4·(-2)·4
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{3}}{2*-2}=\frac{4-4\sqrt{3}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{3}}{2*-2}=\frac{4+4\sqrt{3}}{-4} $

See similar equations:

| -5(6a+3)=-225 | | 4^x=200000 | | 10y-6=5 | | 4^x=200,000 | | -7-6x=-49 | | 4+10r=-136 | | 15-6+4x=46 | | (x=3)+x+(5-2x)=78 | | 1.3x-12=0.8x=6 | | K-7k=3(6k-8)+5(-3k-6) | | -2(2m-4)=2m-7-6m | | 130+x-20=180 | | -12+2m=-32 | | 7/3x1/3x=16+5/3x | | 6n+8=-40 | | 3/x-2=7/x+2 | | X^2x+37=0 | | 6.2x+8=2.2x+16 | | 11=−5x−22-5x= | | 6x-4x-6=24-9x | | -27k=1215 | | -3(5^2-4^2)-6(6^2-5^2)=x | | 5z+8-7z=-4z+1 | | -7+10r=-77 | | 7d+12–4d–3=() | | 171=6(-4x-3)=3x | | 14(z+3=14z+21 | | 28=a/25 | | 6.2g+8=2.2+16 | | -23=n/14 | | 88=-2(-6b-2) | | -19=3-r |

Equations solver categories