1/2x+3/5x-3=2/5x+4

Simple and best practice solution for 1/2x+3/5x-3=2/5x+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x+3/5x-3=2/5x+4 equation:



1/2x+3/5x-3=2/5x+4
We move all terms to the left:
1/2x+3/5x-3-(2/5x+4)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 5x+4)!=0
x∈R
We get rid of parentheses
1/2x+3/5x-2/5x-4-3=0
We calculate fractions
5x/10x^2+(-4x+3)/10x^2-4-3=0
We add all the numbers together, and all the variables
5x/10x^2+(-4x+3)/10x^2-7=0
We multiply all the terms by the denominator
5x+(-4x+3)-7*10x^2=0
Wy multiply elements
-70x^2+5x+(-4x+3)=0
We get rid of parentheses
-70x^2+5x-4x+3=0
We add all the numbers together, and all the variables
-70x^2+x+3=0
a = -70; b = 1; c = +3;
Δ = b2-4ac
Δ = 12-4·(-70)·3
Δ = 841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{841}=29$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-29}{2*-70}=\frac{-30}{-140} =3/14 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+29}{2*-70}=\frac{28}{-140} =-1/5 $

See similar equations:

| 7+b/4=2 | | 8n-17=5n=7 | | 10x+8=12x-10=180 | | f/6-3=18 | | 9d-18-6d=2(7d+9 | | 8x-32=6x+2 | | −30+k=22 | | 500x²+20415.024x-3062253.6=0 | | 9x-5/7=6x+2/5 | | X=(x-8)*9/7 | | 2(x+3)-5x+12=6 | | 5(2x-1)+-5=10x | | .9(x+2/3)=4.5 | | (7a÷8)-5=2a+2 | | 7a÷8-5=2a+2 | | 6*6+9=-3n-21-6 | | 6x+2=8x-32 | | -9(z+1)=-8z-8 | | 9x+8=5-2x | | 3x=4x35-x | | 3p+2=29 | | 100+25x=45x | | 33m=22m+11 | | -1/4(4s+12)=5(-7+8) | | -96=-6(2x+4) | | 4=11-7x | | -2y-3y+8=8-5y-13 | | -12+6x=6+5(×-2) | | -4x-5x-1=80 | | 0.5(7x+4)=7−1.5x | | T-5b+11=7-6b | | 4(x+3)=-6x+42 |

Equations solver categories