1/2x+36=1/4x+72

Simple and best practice solution for 1/2x+36=1/4x+72 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x+36=1/4x+72 equation:



1/2x+36=1/4x+72
We move all terms to the left:
1/2x+36-(1/4x+72)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 4x+72)!=0
x∈R
We get rid of parentheses
1/2x-1/4x-72+36=0
We calculate fractions
4x/8x^2+(-2x)/8x^2-72+36=0
We add all the numbers together, and all the variables
4x/8x^2+(-2x)/8x^2-36=0
We multiply all the terms by the denominator
4x+(-2x)-36*8x^2=0
Wy multiply elements
-288x^2+4x+(-2x)=0
We get rid of parentheses
-288x^2+4x-2x=0
We add all the numbers together, and all the variables
-288x^2+2x=0
a = -288; b = 2; c = 0;
Δ = b2-4ac
Δ = 22-4·(-288)·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2}{2*-288}=\frac{-4}{-576} =1/144 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2}{2*-288}=\frac{0}{-576} =0 $

See similar equations:

| Y+16y3+64y=0 | | m+4/3=4 | | 1/4x+36=72-1/2 | | 3(q-10)-3=9 | | -3z-8=-2z | | 2(x–6)^2=72 | | 3x-4=-58 | | √1-2x=10 | | 0=1/7x^2-7 | | -4(3-x)+8=-12 | | g-11/2=3 | | {5n}=15 | | -7x-16=5 | | -2(7g+3)-5.5=41.7 | | 4x^2-2x=650 | | 25x+200=75 | | P(x)=2x^2+4xP(x)^2 | | 5/4=180/x | | 12-5x=17-4x | | 5(x+1)=3x+17 | | 3x-9=6x+8 | | 13+7x=-3 | | 19=w+1 | | 10/8=180/x | | 15/5=75/x | | x+x+59+48+50+39+58=360 | | 5(3−m)+10=5(5−m) | | 2x+71+85+44+3x=360 | | 3.27=r•1.5954 | | 9^x=4^(5x) | | 332=28.4(x)=76 | | H(t)=−t2+2t+3 |

Equations solver categories