If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/2x+3x=24-4x
We move all terms to the left:
1/2x+3x-(24-4x)=0
Domain of the equation: 2x!=0We add all the numbers together, and all the variables
x!=0/2
x!=0
x∈R
1/2x+3x-(-4x+24)=0
We add all the numbers together, and all the variables
3x+1/2x-(-4x+24)=0
We get rid of parentheses
3x+1/2x+4x-24=0
We multiply all the terms by the denominator
3x*2x+4x*2x-24*2x+1=0
Wy multiply elements
6x^2+8x^2-48x+1=0
We add all the numbers together, and all the variables
14x^2-48x+1=0
a = 14; b = -48; c = +1;
Δ = b2-4ac
Δ = -482-4·14·1
Δ = 2248
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2248}=\sqrt{4*562}=\sqrt{4}*\sqrt{562}=2\sqrt{562}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-48)-2\sqrt{562}}{2*14}=\frac{48-2\sqrt{562}}{28} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-48)+2\sqrt{562}}{2*14}=\frac{48+2\sqrt{562}}{28} $
| (9x-5)+(7x-5)=22 | | 31=v/4+12 | | 50=2/3c | | (4x^2-15x+18)=0 | | 7(x-5)=-84 | | (X-1)^6+(x-1)^3+1=0 | | (3/2)x+x^2-22=0 | | 3/4p=21 | | 8/3c−2=2/3c−12 | | 49=7-5+1x | | -7(t-2)-(t+9)=4 | | 275+d+1091=12 | | 38c−2=32c−1 | | 2x^2+6x-81=0 | | 4-5v=v-8 | | m^2=148 | | 6=t/2 | | (1+2)÷3=x-5 | | 4x-1=2x+7x | | 6x+4-x=20-3x | | x+5/2=11 | | -2(4n+1)=8 | | ×-2=2x-4 | | 25/3=p/3 | | 15/3=8x+2(-8x) | | 5(x+2)=2(x+2)+3x | | 12x-14+10x=180 | | 56=8+1x-5x | | 3x+6x=25-7 | | 3(7/3x+4/3)-2x+8=5x+12 | | 3x-12=x^2-4x+3 | | 10+5/7x=25 |