1/2x+3x=24-4x

Simple and best practice solution for 1/2x+3x=24-4x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x+3x=24-4x equation:



1/2x+3x=24-4x
We move all terms to the left:
1/2x+3x-(24-4x)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
1/2x+3x-(-4x+24)=0
We add all the numbers together, and all the variables
3x+1/2x-(-4x+24)=0
We get rid of parentheses
3x+1/2x+4x-24=0
We multiply all the terms by the denominator
3x*2x+4x*2x-24*2x+1=0
Wy multiply elements
6x^2+8x^2-48x+1=0
We add all the numbers together, and all the variables
14x^2-48x+1=0
a = 14; b = -48; c = +1;
Δ = b2-4ac
Δ = -482-4·14·1
Δ = 2248
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2248}=\sqrt{4*562}=\sqrt{4}*\sqrt{562}=2\sqrt{562}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-48)-2\sqrt{562}}{2*14}=\frac{48-2\sqrt{562}}{28} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-48)+2\sqrt{562}}{2*14}=\frac{48+2\sqrt{562}}{28} $

See similar equations:

| (9x-5)+(7x-5)=22 | | 31=v/4+12 | | 50=2/3c | | (4x^2-15x+18)=0 | | 7(x-5)=-84 | | (X-1)^6+(x-1)^3+1=0 | | (3/2)x+x^2-22=0 | | 3/4p=21 | | 8/3​​c−2=​2/3​​c−12 | | 49=7-5+1x | | -7(t-2)-(t+9)=4 | | 275+d+1091=12 | | 3​​8​​c−2=​3​​2​​c−1 | | 2x^2+6x-81=0 | | 4-5v=v-8 | | m^2=148 | | 6=t/2 | | (1+2)÷3=x-5 | | 4x-1=2x+7x | | 6x+4-x=20-3x | | x+5/2=11 | | -2(4n+1)=8 | | ×-2=2x-4 | | 25/3=p/3 | | 15/3=8x+2(-8x) | | 5(x+2)=2(x+2)+3x | | 12x-14+10x=180 | | 56=8+1x-5x | | 3x+6x=25-7 | | 3(7/3x+4/3)-2x+8=5x+12 | | 3x-12=x^2-4x+3 | | 10+5/7x=25 |

Equations solver categories