1/2x+3x=2x+42

Simple and best practice solution for 1/2x+3x=2x+42 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x+3x=2x+42 equation:



1/2x+3x=2x+42
We move all terms to the left:
1/2x+3x-(2x+42)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
3x+1/2x-(2x+42)=0
We get rid of parentheses
3x+1/2x-2x-42=0
We multiply all the terms by the denominator
3x*2x-2x*2x-42*2x+1=0
Wy multiply elements
6x^2-4x^2-84x+1=0
We add all the numbers together, and all the variables
2x^2-84x+1=0
a = 2; b = -84; c = +1;
Δ = b2-4ac
Δ = -842-4·2·1
Δ = 7048
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7048}=\sqrt{4*1762}=\sqrt{4}*\sqrt{1762}=2\sqrt{1762}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-84)-2\sqrt{1762}}{2*2}=\frac{84-2\sqrt{1762}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-84)+2\sqrt{1762}}{2*2}=\frac{84+2\sqrt{1762}}{4} $

See similar equations:

| Y=x^2-6x+90.25 | | 74=7(1+7n)-6(-4+n) | | 5•(1.5)x=26 | | -41=x/9 | | 10x-1/x=0 | | 12=-6x+2x | | 3x-10X+2)=13-7x | | 21x+42=0 | | 2x4+9x2+4=0 | | -8(-6n+5)+2(8n-1)=-42 | | r^2+-2r+r^2=0.25 | | Y=7/2x+3 | | 9+x=6x-26 | | 9+x=6x-2 | | 6=4.5/z | | 14.12+8x=30.12 | | x^2-18=8x | | 24-3x=14+7x | | -5(-4p+8)=100 | | 13+c)÷7=-3 | | -2x-1=2x-1 | | d+0,5=0.75 | | (3x+1)^2=25 | | 5k+-7k−16k=18 | | 1/4n=-5 | | 3(5n-5)=105 | | -3(x-6)+4(x+1)=7x-8 | | 2x-3+4x-7=-12.5 | | -3(x-6)=4(x+1)=7x-8 | | 2(3d+8=-24-7d | | 13+n-19=-4 | | 5x-8=x-20-12 |

Equations solver categories