If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/2x+4x-5=8x-7/2x=+9-14
We move all terms to the left:
1/2x+4x-5-(8x-7/2x)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 2x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
1/2x+4x-(+8x-7/2x)-5=0
We add all the numbers together, and all the variables
4x+1/2x-(+8x-7/2x)-5=0
We get rid of parentheses
4x+1/2x-8x+7/2x-5=0
We multiply all the terms by the denominator
4x*2x-8x*2x-5*2x+1+7=0
We add all the numbers together, and all the variables
4x*2x-8x*2x-5*2x+8=0
Wy multiply elements
8x^2-16x^2-10x+8=0
We add all the numbers together, and all the variables
-8x^2-10x+8=0
a = -8; b = -10; c = +8;
Δ = b2-4ac
Δ = -102-4·(-8)·8
Δ = 356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{356}=\sqrt{4*89}=\sqrt{4}*\sqrt{89}=2\sqrt{89}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{89}}{2*-8}=\frac{10-2\sqrt{89}}{-16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{89}}{2*-8}=\frac{10+2\sqrt{89}}{-16} $
| 8n=n-14 | | y=350+14-(16.75+0.1y) | | j=2(5)-1 | | |7n+2|=58 | | x+23=9/10 | | 3(x-1)-8=4(1+x)-5 | | 2v+6=8v-6 | | 9u=21+2u | | 18x=23x+17 | | 15n+25=2(n-7 | | (6)(5x/2)=0 | | 10x+3x=-2 | | 6x-3=+x+8x | | 4v+1=5v-6 | | 450=7.5x | | 12x+31=127 | | -8+15-4x=-3(4x-5) | | 3(2x-5)+31=13 | | 5(2x-3)+7x=2/3(6x+12-10 | | -2(x)=18 | | -15=9r=1-7r | | 14x+9=8x+5+6x | | 30=1/2(4x+28) | | 3z-17=2z=13 | | x-42+1/4x+21+2x-59=180 | | 2(-5x-2)-8=-92 | | -2(7u-7)+9u=7(u+4) | | -18=9y-5y=10 | | 2(3y+5)=16y | | -3x+2=x+4(x+2) | | 2(9x-3)=-3(2x+10) | | 4x=48(1/2) |