1/2x+x+x-35+x-46=360

Simple and best practice solution for 1/2x+x+x-35+x-46=360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x+x+x-35+x-46=360 equation:



1/2x+x+x-35+x-46=360
We move all terms to the left:
1/2x+x+x-35+x-46-(360)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
3x+1/2x-441=0
We multiply all the terms by the denominator
3x*2x-441*2x+1=0
Wy multiply elements
6x^2-882x+1=0
a = 6; b = -882; c = +1;
Δ = b2-4ac
Δ = -8822-4·6·1
Δ = 777900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{777900}=\sqrt{100*7779}=\sqrt{100}*\sqrt{7779}=10\sqrt{7779}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-882)-10\sqrt{7779}}{2*6}=\frac{882-10\sqrt{7779}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-882)+10\sqrt{7779}}{2*6}=\frac{882+10\sqrt{7779}}{12} $

See similar equations:

| 300p+300p-10+p-592=1 | | 10x-1x-12=3(3x-4) | | 8^x=4096 | | 52=w/2 | | v3– -8= 12 | | 2/3x-4=3x-4 | | y=4(-3/4)-3 | | 0.5t+0.13(t+1)=5.7 | | 3x+5+4x-7=40 | | 21/6=45/m | | 3^2x+1*3x=243 | | 32+16x=0 | | 9g+11=3 | | 76x=976 | | 3x-13+2x-25+1x=180 | | 2(3)(4)-2(3)(5x)=6 | | 2/3(x+5)=12 | | -8p^2+13=-9p+9 | | 24x+25=-47 | | (3x-13)+(2x-25)+1x=180 | | 3=((12)(x))/(12)+x | | 1n-12=5n+4 | | 300p+300p-10+p-30=2 | | z/5=z/15+8/3 | | 3/5x+9/10=-1/5x-23/10 | | 4x+20x+25x=-47 | | 2x-12=52 | | 4/3x+3=15 | | 13x-2-7=17 | | 5x+6x=8x+2x | | -3/4(2j-4)=-9 | | 5x-3(x-5)=-6+4x+13 |

Equations solver categories