1/2x+x-15+1/2x+x-25+100=540

Simple and best practice solution for 1/2x+x-15+1/2x+x-25+100=540 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x+x-15+1/2x+x-25+100=540 equation:



1/2x+x-15+1/2x+x-25+100=540
We move all terms to the left:
1/2x+x-15+1/2x+x-25+100-(540)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
2x+1/2x+1/2x-480=0
We multiply all the terms by the denominator
2x*2x-480*2x+1+1=0
We add all the numbers together, and all the variables
2x*2x-480*2x+2=0
Wy multiply elements
4x^2-960x+2=0
a = 4; b = -960; c = +2;
Δ = b2-4ac
Δ = -9602-4·4·2
Δ = 921568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{921568}=\sqrt{16*57598}=\sqrt{16}*\sqrt{57598}=4\sqrt{57598}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-960)-4\sqrt{57598}}{2*4}=\frac{960-4\sqrt{57598}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-960)+4\sqrt{57598}}{2*4}=\frac{960+4\sqrt{57598}}{8} $

See similar equations:

| 6(1-5m=) | | 16+3*x=4*x-58 | | 13+2*x=4*x-91 | | 5x-2+x=6x+17 | | 3(x+2)-4(2x-3)=19x+6 | | x-1/3+24=x | | 8x+6-(4x+2)=0 | | -54=-9/8b | | 9(2y-4)=6(y+2) | | 4(3y-2)=9y+7 | | 2x+10+8x=15x+5 | | 1/2x+7/3=x+5 | | 4x^2+21x+42=0 | | X+(x+1)=87 | | 3(2x+4)=2(4x+5) | | 12x=5(6-x) | | 11g+4=5g+40 | | 8x+6+(4x+2)=0 | | (4w+6)(5-w)=0 | | 10x=4(6-x) | | V=(6-2x)(6-2x)x | | 6+3*x=4*x-115 | | 10x=4x(6-x) | | 6(8+p)=9(7+p) | | -r^2+5r^2-4=0 | | 7x+4=12+5x | | 6x+8=3x+22 | | 3x^2-2x-5=9 | | 4x+23=11+7x | | 5x-5=8x-20 | | x+6=78 | | 12-5x=8x-14 |

Equations solver categories