1/2x+x-25+100+x-15+1/2x=540

Simple and best practice solution for 1/2x+x-25+100+x-15+1/2x=540 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x+x-25+100+x-15+1/2x=540 equation:



1/2x+x-25+100+x-15+1/2x=540
We move all terms to the left:
1/2x+x-25+100+x-15+1/2x-(540)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
2x+1/2x+1/2x-480=0
We multiply all the terms by the denominator
2x*2x-480*2x+1+1=0
We add all the numbers together, and all the variables
2x*2x-480*2x+2=0
Wy multiply elements
4x^2-960x+2=0
a = 4; b = -960; c = +2;
Δ = b2-4ac
Δ = -9602-4·4·2
Δ = 921568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{921568}=\sqrt{16*57598}=\sqrt{16}*\sqrt{57598}=4\sqrt{57598}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-960)-4\sqrt{57598}}{2*4}=\frac{960-4\sqrt{57598}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-960)+4\sqrt{57598}}{2*4}=\frac{960+4\sqrt{57598}}{8} $

See similar equations:

| X^2-2x=(-2)(3-x) | | 13-n=13 | | 115-v=223 | | 4x-1=3+5 | | 14=16+m | | 289=204-y | | x2+3x-6=8 | | 83=5x+2(x+10) | | -45+5x=-73 | | 83=5x+2(x=+10) | | z3−3=1 | | -a/6+5=-12 | | z3− 3=1 | | 40+19.95m=59.85+29.95 | | 3x-5=(-3x)+31 | | 3x+1=x=13 | | 8w=2w+18 | | 3x+5/4=11 | | 8x-8x=60 | | x+6/3=-8 | | (2x+5)=x | | 2y^2-5=15-3y^2 | | -4x-5+2x=9 | | 2.52=1.2x | | 10x+60+30=120 | | (x+2)(x+3)(x+4)(x+6)=30x | | -11/12(x)=7 | | -5x+2+8x=4-2x+8 | | 3x+72=65x-56 | | 2(x-30)=10 | | 15x²+7x-20=0 | | 246=124-x |

Equations solver categories