1/2x+x-35+x+x-46=360

Simple and best practice solution for 1/2x+x-35+x+x-46=360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x+x-35+x+x-46=360 equation:



1/2x+x-35+x+x-46=360
We move all terms to the left:
1/2x+x-35+x+x-46-(360)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
3x+1/2x-441=0
We multiply all the terms by the denominator
3x*2x-441*2x+1=0
Wy multiply elements
6x^2-882x+1=0
a = 6; b = -882; c = +1;
Δ = b2-4ac
Δ = -8822-4·6·1
Δ = 777900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{777900}=\sqrt{100*7779}=\sqrt{100}*\sqrt{7779}=10\sqrt{7779}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-882)-10\sqrt{7779}}{2*6}=\frac{882-10\sqrt{7779}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-882)+10\sqrt{7779}}{2*6}=\frac{882+10\sqrt{7779}}{12} $

See similar equations:

| 2(6r+1)=37+5r | | 6(27+6)=(9+3y) | | 10=-2+4n | | x5+4=9 | | 2(4-3x)=2(2x+1) | | 7n+4=-52 | | 3x-40=1/2*x+35 | | 12x-3(x-2)=5x | | 8=n/9 | | 1/2x^2+1/2X-10=0 | | 6x-1=137 | | X/2-4=1/2x-6 | | 4y-142+y+2=64 | | 2y+18=70 | | 5-3k=-3-5k | | 187=h+65 | | 3/4x+6=1/2x+1 | | 3x+2(x-1)=8x-2 | | M/g=7.3 | | 3(d-8)/4=2(d+1)/3 | | 7(4x9)=-26+6x | | -2n+7=8n+7 | | 3x+2=5×-7 | | 7(n+3)=7n-3 | | 1/4x-18=42 | | X-1+x+3=12 | | 7-y=9-5y | | 2/5b+1=-15 | | 2x^2+10=190 | | 3x^-12x+9=0 | | -24=12(r+5) | | 12(3x-1)=3(12x+9) |

Equations solver categories