1/2x+x-35+x-46+x=360

Simple and best practice solution for 1/2x+x-35+x-46+x=360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x+x-35+x-46+x=360 equation:



1/2x+x-35+x-46+x=360
We move all terms to the left:
1/2x+x-35+x-46+x-(360)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
3x+1/2x-441=0
We multiply all the terms by the denominator
3x*2x-441*2x+1=0
Wy multiply elements
6x^2-882x+1=0
a = 6; b = -882; c = +1;
Δ = b2-4ac
Δ = -8822-4·6·1
Δ = 777900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{777900}=\sqrt{100*7779}=\sqrt{100}*\sqrt{7779}=10\sqrt{7779}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-882)-10\sqrt{7779}}{2*6}=\frac{882-10\sqrt{7779}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-882)+10\sqrt{7779}}{2*6}=\frac{882+10\sqrt{7779}}{12} $

See similar equations:

| 10-3x=-52 | | (14x+4)+16x-4)=180 | | -4(3m+5)=-2( | | H(t)=-16t2+5184 | | M-7m=24 | | 5m=12m+1.24-7m | | 11y+3=-25 | | 56.52=3.14(2.25)h | | g(6)=2(6)-4 | | -5(x+2)=(-5X+1)X | | 5x-14=2x+54 | | 5x-14=2x+554 | | (x-30)=540 | | 5x-7-3x=x-5 | | 11x-(7x-4)=32 | | -7x+6x=5 | | 4c+c=-7c | | h+6=12-5h | | -16(r-8)=4(r+62) | | 2y/5=26/30 | | -4(1+4x)-3x=3(-7x+10) | | 1.05x=37,800 | | -9/10x-3=3/5 | | 8-9x=21x-1 | | 60+40d=20d | | c/9=-2/3 | | 2-5a-8=-6 | | x+5=2=x-3 | | 20=x+2x+ | | 7x-3=4x+17 | | 20+4h=8h | | 10y-3=2y+1 |

Equations solver categories