1/2x+x=30+180

Simple and best practice solution for 1/2x+x=30+180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x+x=30+180 equation:



1/2x+x=30+180
We move all terms to the left:
1/2x+x-(30+180)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
1/2x+x-210=0
We add all the numbers together, and all the variables
x+1/2x-210=0
We multiply all the terms by the denominator
x*2x-210*2x+1=0
Wy multiply elements
2x^2-420x+1=0
a = 2; b = -420; c = +1;
Δ = b2-4ac
Δ = -4202-4·2·1
Δ = 176392
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{176392}=\sqrt{4*44098}=\sqrt{4}*\sqrt{44098}=2\sqrt{44098}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-420)-2\sqrt{44098}}{2*2}=\frac{420-2\sqrt{44098}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-420)+2\sqrt{44098}}{2*2}=\frac{420+2\sqrt{44098}}{4} $

See similar equations:

| (9x-7)=1 | | |x+17|=4 | | 2x-6-10=0 | | 1+3/4x=25/28 | | 12(v+1)-4v=2(4v+2)-12 | | 8x-4(1-4x)=164 | | 5/8=u/9 | | 41+4x=-3 | | 3+12x=2+20x | | -x+2(-x)+8=x | | 2(x-3)+4=10 | | 500-30x=1 | | (5x+2)-12=28 | | 3x+4+6=18 | | 128=(4)(5x+7) | | 5v-3=-28v= | | 5x+2-12=28 | | 6x+4x=30-4x | | y/2+5=11 | | 7x-2+4x+5x-11=180 | | 4x+5x=27-3x | | 200+20x=140+30x | | |2x-3|=3x-1 | | x-4/3=x/15 | | I2x-3I=3x-1 | | 5+1x=8x+.75x | | Z-5/z-3=z | | 2(y+y)=2*y+2*y | | -1/6(x-12)=1/2(x+2)=x-5 | | (p+8)^2=0 | | 16=13y | | -7x-5=10x+80 |

Equations solver categories