1/2x-10+3/2x=x+1

Simple and best practice solution for 1/2x-10+3/2x=x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x-10+3/2x=x+1 equation:



1/2x-10+3/2x=x+1
We move all terms to the left:
1/2x-10+3/2x-(x+1)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We get rid of parentheses
1/2x+3/2x-x-1-10=0
We multiply all the terms by the denominator
-x*2x-1*2x-10*2x+1+3=0
We add all the numbers together, and all the variables
-x*2x-1*2x-10*2x+4=0
Wy multiply elements
-2x^2-2x-20x+4=0
We add all the numbers together, and all the variables
-2x^2-22x+4=0
a = -2; b = -22; c = +4;
Δ = b2-4ac
Δ = -222-4·(-2)·4
Δ = 516
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{516}=\sqrt{4*129}=\sqrt{4}*\sqrt{129}=2\sqrt{129}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-2\sqrt{129}}{2*-2}=\frac{22-2\sqrt{129}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+2\sqrt{129}}{2*-2}=\frac{22+2\sqrt{129}}{-4} $

See similar equations:

| 1/2x+1/3=-4(5/6x+5) | | 2/3x+8=1/4x | | 2.5x+8.6x=-67.71 | | 14x-(9x-63)=63 | | -8n-8-7=-27 | | 2x-9x+59=4x+37 | | 10x^2-7x-10=0 | | 23k^2-21k=0 | | 80-71=31y-34y | | 40=1.80x | | .80×x=40 | | 0.2(10000)+0.06x=0.052(10000+x) | | 8x+26=82 | | -3+18=4b-4-3b | | Z^2-49z=0 | | 1/6x+3/4=5/12 | | 1.80x=40 | | 5(2×-1)-2(3x)=12 | | -5=n+5 | | 3x^2+12x-11.25=0 | | 22÷x=11 | | 8x+3(x-2)=104 | | 5-(x-6)=4(x+11) | | 139.95=10z+19.95 | | 1/5x+1/2=5(5/6x+1) | | 520=558(1+n×12.5) | | 5-(×-6)=4(x+11) | | 83-115=-8(-4y)-17(2y)+y | | 2x+3x/2=20 | | 5x+x=402 | | 520n=558(1+n×12.5) | | -9/5k+(−6/5)=−4−(−2/7k) |

Equations solver categories