1/2x-13/15=1/6x-1

Simple and best practice solution for 1/2x-13/15=1/6x-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x-13/15=1/6x-1 equation:



1/2x-13/15=1/6x-1
We move all terms to the left:
1/2x-13/15-(1/6x-1)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 6x-1)!=0
x∈R
We get rid of parentheses
1/2x-1/6x+1-13/15=0
We calculate fractions
(-936x^2)/180x^2+90x/180x^2+(-30x)/180x^2+1=0
We multiply all the terms by the denominator
(-936x^2)+90x+(-30x)+1*180x^2=0
Wy multiply elements
(-936x^2)+180x^2+90x+(-30x)=0
We get rid of parentheses
-936x^2+180x^2+90x-30x=0
We add all the numbers together, and all the variables
-756x^2+60x=0
a = -756; b = 60; c = 0;
Δ = b2-4ac
Δ = 602-4·(-756)·0
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{3600}=60$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-60}{2*-756}=\frac{-120}{-1512} =5/63 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+60}{2*-756}=\frac{0}{-1512} =0 $

See similar equations:

| 2-2=6x+4x | | 6x-6+x=36 | | x/30=-24+8 | | |2x+3|+8=3 | | 133=(x-19) | | -6x+2=20-4x | | $26x-34=18$ | | (9^(2x-15))=((1/27)^4x) | | -5a=-408 | | (x+3)^2+5=0 | | 4y(2)=5.76 | | 25^(2x)=45 | | 4(x-3)=65 | | 1/3(t-3)=4 | | 0.40x+0.20(100-x)=30 | | 16x-33=14x-2 | | 4n+2=6(​1/3n−​2/3​) | | x^2+40x-351=0 | | 9(2x-4)+6=8x+18-2x | | 14x=4.9 | | 2.9x-3.9x=9.7 | | 1/3(6y-7)=5 | | 2(8=4x)32 | | 7/16=x/12 | | 5x+7=-2x+49 | | 8n^2+55n+42=0 | | -5x+8=-2x+5 | | 8.95+1.50c=26.95 | | 20-2b=2b | | 4t/5=32 | | 7/11=6/u | | 16(u+2)=8(u+4)+8u |

Equations solver categories