1/2x-20-x=3(2x+11-2x-1

Simple and best practice solution for 1/2x-20-x=3(2x+11-2x-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x-20-x=3(2x+11-2x-1 equation:



1/2x-20-x=3(2x+11-2x-1
We move all terms to the left:
1/2x-20-x-(3(2x+11-2x-1)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
1/2x-x-(310-20=0
We add all the numbers together, and all the variables
-1x+1/2x=0
We multiply all the terms by the denominator
-1x*2x+1=0
Wy multiply elements
-2x^2+1=0
a = -2; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-2)·1
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2}}{2*-2}=\frac{0-2\sqrt{2}}{-4} =-\frac{2\sqrt{2}}{-4} =-\frac{\sqrt{2}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2}}{2*-2}=\frac{0+2\sqrt{2}}{-4} =\frac{2\sqrt{2}}{-4} =\frac{\sqrt{2}}{-2} $

See similar equations:

| 6/7c+3=15 | | W(t)=3t-1;t=-1/3 | | 4x+2=x-13 | | N(-2)=-1-x+4 | | -20=-8-6r | | B(5)x=0 | | W(t)=15t-1 | | z+2/3=6+1/6 | | B(0)x=-2 | | 3/5(2m-10)=2/3m+5.2 | | 6b-3=-27 | | 6b−3=−27 | | W(-1/3)=15t-1, | | X²-3x+11=0 | | 2x-+2=0 | | 4(p-18.97)+2=-2.56 | | 2x+14=6x+38 | | 3x2+10x+3=0 | | x/3=46x | | 2.22=0.4g | | (X+1)^2+(x-2)^2=37 | | W(t)=3t-1t=1/3 | | 2x+1=6x+25 | | F=6.67x10^-11((1x6144)/678.4) | | 10x-5=9+8x | | 3c+5=6(c-3) | | -3z+7=16 | | -6y-3=-2y+7-4y | | z-13=17 | | 18j-16j=-16 | | 1/5x+4=2/5x-3 | | 1/5x+4=25x-3 |

Equations solver categories