1/2x-2x=25+x

Simple and best practice solution for 1/2x-2x=25+x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x-2x=25+x equation:



1/2x-2x=25+x
We move all terms to the left:
1/2x-2x-(25+x)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
1/2x-2x-(x+25)=0
We add all the numbers together, and all the variables
-2x+1/2x-(x+25)=0
We get rid of parentheses
-2x+1/2x-x-25=0
We multiply all the terms by the denominator
-2x*2x-x*2x-25*2x+1=0
Wy multiply elements
-4x^2-2x^2-50x+1=0
We add all the numbers together, and all the variables
-6x^2-50x+1=0
a = -6; b = -50; c = +1;
Δ = b2-4ac
Δ = -502-4·(-6)·1
Δ = 2524
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2524}=\sqrt{4*631}=\sqrt{4}*\sqrt{631}=2\sqrt{631}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-2\sqrt{631}}{2*-6}=\frac{50-2\sqrt{631}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+2\sqrt{631}}{2*-6}=\frac{50+2\sqrt{631}}{-12} $

See similar equations:

| 6(1c+4)=-4c-18 | | P+8p=-9 | | X-20=(20+x)÷3 | | 7x-2x×11=16 | | 3x-5(-7)=15 | | -2(-4-3x)=56 | | 12r+r=104 | | 2r+2(r+2)=200 | | X/4-4=3x/4(6) | | x-0.9=3.9 | | 3x-5(7)=15 | | 3/5x=4-8/5 | | x+.25=1 | | -5x/3-2x=4-2x/3 | | 2k+153+k=180 | | 2r+2(r+1)=210 | | -11x+3-5=4-7x+x | | 3n+12=-21 | | 1/3(-12)+y=12 | | 1/4+m=1/3 | | -8.33+2k=1.67 | | 5(c-10)=15 | | 1/3(-4)+y=12 | | 2x^2+3x-75=0 | | 3x-1/4(24+8x)=-5 | | 1/3(-2)+y=12 | | 3x+1+7x+11=90 | | -5(6x+8)=50 | | 13(-8x+22)=-17(x-3) | | 1/3(1)+y=12 | | 2(x-9)-8=-26 | | x+21/x=-10 |

Equations solver categories