1/2x-2x=3-5x

Simple and best practice solution for 1/2x-2x=3-5x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x-2x=3-5x equation:



1/2x-2x=3-5x
We move all terms to the left:
1/2x-2x-(3-5x)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
1/2x-2x-(-5x+3)=0
We add all the numbers together, and all the variables
-2x+1/2x-(-5x+3)=0
We get rid of parentheses
-2x+1/2x+5x-3=0
We multiply all the terms by the denominator
-2x*2x+5x*2x-3*2x+1=0
Wy multiply elements
-4x^2+10x^2-6x+1=0
We add all the numbers together, and all the variables
6x^2-6x+1=0
a = 6; b = -6; c = +1;
Δ = b2-4ac
Δ = -62-4·6·1
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{3}}{2*6}=\frac{6-2\sqrt{3}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{3}}{2*6}=\frac{6+2\sqrt{3}}{12} $

See similar equations:

| (63-x)=180 | | 2x-40=140 | | x+.2x=31 | | 20-3x=-4(x-4) | | 6r-r-2r+3r-3r=18 | | x-5x/4+3/4=3x/8-3x/2-7/8 | | x=100+(x*0.1) | | 11x+4x-4x-5x=18 | | 1/2x+2=-5/2x | | (72+2x)=180 | | 5m-3m+m=6 | | X+99=4xX= | | 14h-12h=18 | | 2(2x-1)+x=68 | | -4(x+2)=-8+4x | | 2+3x=63 | | x+5+11=12 | | 12=7x+-6 | | x+1/6=5/6-2/3 | | 7x+3(5x-3)-(5x+1)=7(2x+2 | | 2(4x-1)=3(x+4) | | 2/3n+21/4=4/712 | | 90+2x+x-6=180 | | 6x+8=3x-8 | | 2.7x+1.5=3.5+0.2x | | 2(m-3)=20 | | -3(x-2)=-3(-2+9x) | | 9=4u−7 | | 5r-(2r-8)=26 | | 3s/8=-6 | | -2/5=4/3x-1/2 | | 10b^2+10b+3=0 |

Equations solver categories