1/2x-3/5=2/5x+3

Simple and best practice solution for 1/2x-3/5=2/5x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x-3/5=2/5x+3 equation:



1/2x-3/5=2/5x+3
We move all terms to the left:
1/2x-3/5-(2/5x+3)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 5x+3)!=0
x∈R
We get rid of parentheses
1/2x-2/5x-3-3/5=0
We calculate fractions
125x/250x^2+(-4x)/250x^2+(-6x)/250x^2-3=0
We multiply all the terms by the denominator
125x+(-4x)+(-6x)-3*250x^2=0
Wy multiply elements
-750x^2+125x+(-4x)+(-6x)=0
We get rid of parentheses
-750x^2+125x-4x-6x=0
We add all the numbers together, and all the variables
-750x^2+115x=0
a = -750; b = 115; c = 0;
Δ = b2-4ac
Δ = 1152-4·(-750)·0
Δ = 13225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{13225}=115$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(115)-115}{2*-750}=\frac{-230}{-1500} =23/150 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(115)+115}{2*-750}=\frac{0}{-1500} =0 $

See similar equations:

| 7x-94=2x-9 | | 3|x+2|+4=13 | | x+98=15 | | -14+4x=-22 | | 3(x-7)+9=7x+10 | | 5⋅d=15 | | p−4=−9+p | | -2x+7+4x=4 | | X2-10x+66=0 | | 98x+5.1=-7x-624.9 | | -11+3/7w=-4/7w | | (15x+3)=108 | | 5(3x=4)-2x=7x-3(-2x=11) | | 2s–1=5 | | -n+4(n+1)=7 | | -4x+14=-22 | | -2m+7+m=-8-2m | | -11(-51u+96)=11(-3u+228) | | -20x^2-14x+12=0 | | 6y-18=-24 | | 2d–1=1 | | 8x(4)=32 | | 3x^​2​​−33x+54=03 | | 9=3y-6 | | 3x​2​​−33x+54=03 | | 40=2y+20 | | 6x-4=15x-78 | | 2v+2-8=12 | | 7x+4=-13 | | -63x^2-103x-42=0 | | x=49+1/4 | | 100t+1000=5000 |

Equations solver categories