1/2x-3=1/6x+1

Simple and best practice solution for 1/2x-3=1/6x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x-3=1/6x+1 equation:



1/2x-3=1/6x+1
We move all terms to the left:
1/2x-3-(1/6x+1)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 6x+1)!=0
x∈R
We get rid of parentheses
1/2x-1/6x-1-3=0
We calculate fractions
6x/12x^2+(-2x)/12x^2-1-3=0
We add all the numbers together, and all the variables
6x/12x^2+(-2x)/12x^2-4=0
We multiply all the terms by the denominator
6x+(-2x)-4*12x^2=0
Wy multiply elements
-48x^2+6x+(-2x)=0
We get rid of parentheses
-48x^2+6x-2x=0
We add all the numbers together, and all the variables
-48x^2+4x=0
a = -48; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·(-48)·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*-48}=\frac{-8}{-96} =1/12 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*-48}=\frac{0}{-96} =0 $

See similar equations:

| n^2+26n+144=0 | | -3(v+7)=7v+49 | | 5-3y=8+4y | | 12=w-|-7 | | 1/4x+18x=x | | 4u-2=-6u+8 | | 33+1.3c=66 | | 2x(x-3)=9x^2-8x | | (7x-6)+90+(2x+15)=180 | | 10-4x=2-6x | | 42=7+z.5 | | 4x+2=5x-15/19 | | 17+w.3=45 | | 3/x-8=91 | | 10-2/3r=52 | | 9x-14=11x+12 | | ^^u-8=^^43-2u | | 49=10+p.5 | | 3x-2(1-x)=2(3x-2) | | (10x+4)=(12x-26) | | (x^2+16x+64)-(x+8)(x-4)=0 | | 12=g.9 | | 3c+19=22 | | 4x/3+12=24 | | 10=v/10-9 | | 1/6a+2=-4 | | 38.4=3x | | (7x+10)+(15x-8)=90 | | 8(m-3)+3m=7m+43 | | 5x+3+4x+8+146=180 | | 4=-8y+6(y+4) | | 3x+46-5x=48 |

Equations solver categories