1/2x-4(2x+6)=x+1

Simple and best practice solution for 1/2x-4(2x+6)=x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x-4(2x+6)=x+1 equation:



1/2x-4(2x+6)=x+1
We move all terms to the left:
1/2x-4(2x+6)-(x+1)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We multiply parentheses
1/2x-8x-(x+1)-24=0
We get rid of parentheses
1/2x-8x-x-1-24=0
We multiply all the terms by the denominator
-8x*2x-x*2x-1*2x-24*2x+1=0
Wy multiply elements
-16x^2-2x^2-2x-48x+1=0
We add all the numbers together, and all the variables
-18x^2-50x+1=0
a = -18; b = -50; c = +1;
Δ = b2-4ac
Δ = -502-4·(-18)·1
Δ = 2572
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2572}=\sqrt{4*643}=\sqrt{4}*\sqrt{643}=2\sqrt{643}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-2\sqrt{643}}{2*-18}=\frac{50-2\sqrt{643}}{-36} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+2\sqrt{643}}{2*-18}=\frac{50+2\sqrt{643}}{-36} $

See similar equations:

| 5=40b | | 2x-14+2=x(10-11) | | 4x^−4−16x^−2+4=0 | | 5x-10+(-9)=-7-7x | | 204=6x+12 | | 9(q)=18.9 | | 7x-​(6x+4​)=1 | | (1.5)^x=7 | | w-1/10=8/20 | | x2+300=35x | | 4x-4=4x+1/3 | | -9(w+5)-(8w-3)=-18w | | 3(3n+5)=9(9n+5)+6 | | -3(k+2)-(-6k-4)=2k | | -3(k+2)-(6k-4)=2k | | F(x)=6x+20 | | 4w-10w=54 | | 2/3=z/13 | | x+8=4×+2 | | -g^+120g-28=0 | | -8(x+7)=-9x | | 8(x+7)=-9x | | 10=50/5x | | 4w-5=8w-5 | | 11y=10y+10 | | 98=7c | | 7x+7-3x=8+3x-10 | | 20/17(17/20)x=20/17(34) | | 6x+8-3x=8+2x+10 | | 11-2a=-8a+6 | | 8y-7=9y-3 | | 4z+17=3z+13 |

Equations solver categories