1/2x-9=4+7x

Simple and best practice solution for 1/2x-9=4+7x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x-9=4+7x equation:



1/2x-9=4+7x
We move all terms to the left:
1/2x-9-(4+7x)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
1/2x-(7x+4)-9=0
We get rid of parentheses
1/2x-7x-4-9=0
We multiply all the terms by the denominator
-7x*2x-4*2x-9*2x+1=0
Wy multiply elements
-14x^2-8x-18x+1=0
We add all the numbers together, and all the variables
-14x^2-26x+1=0
a = -14; b = -26; c = +1;
Δ = b2-4ac
Δ = -262-4·(-14)·1
Δ = 732
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{732}=\sqrt{4*183}=\sqrt{4}*\sqrt{183}=2\sqrt{183}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-2\sqrt{183}}{2*-14}=\frac{26-2\sqrt{183}}{-28} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+2\sqrt{183}}{2*-14}=\frac{26+2\sqrt{183}}{-28} $

See similar equations:

| (x+300)/10=120 | | 16+2x=-2x+6-14 | | 10x-30=10x+30 | | -9a=24+ | | 10x-30=10x+30* | | 5^2x+3=17 | | X+4+7x=33 | | 2x5+6x=-27 | | X+2+4x=33x | | -3x+228=0 | | 370+-10a=150 | | 1x+64=92 | | 1x+64=-3x+228 | | X+2-4x=33 | | -25+9x^2=0 | | 5x+5x+1-6/25=0 | | 16+2x=2(−x+3)−14 | | 6x+5=185 | | 15x+17=9x+19 | | 2x+7=4x+0 | | 6x-5=-4x+20 | | 9x-2=2+7x | | 15x+19=9x+19 | | 84=10x+4 | | 21.8•x=124.26 | | 34x+6=0 | | x÷2-10=180 | | -0.6^2+36t=0 | | 3x-70=360 | | --9x-13=-103 | | 3x÷2-60-10=180 | | 3^4x+6=0 |

Equations solver categories