1/2y+27+y=180

Simple and best practice solution for 1/2y+27+y=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2y+27+y=180 equation:



1/2y+27+y=180
We move all terms to the left:
1/2y+27+y-(180)=0
Domain of the equation: 2y!=0
y!=0/2
y!=0
y∈R
We add all the numbers together, and all the variables
y+1/2y-153=0
We multiply all the terms by the denominator
y*2y-153*2y+1=0
Wy multiply elements
2y^2-306y+1=0
a = 2; b = -306; c = +1;
Δ = b2-4ac
Δ = -3062-4·2·1
Δ = 93628
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{93628}=\sqrt{4*23407}=\sqrt{4}*\sqrt{23407}=2\sqrt{23407}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-306)-2\sqrt{23407}}{2*2}=\frac{306-2\sqrt{23407}}{4} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-306)+2\sqrt{23407}}{2*2}=\frac{306+2\sqrt{23407}}{4} $

See similar equations:

| 9(3x-4)=32-2x | | (2x-1)=4(3x-2) | | -9-p/4=4 | | -108+10x-5x=67 | | 2^3x=8^2x-3 | | z+3z-2=4z-2 | | 7x-2=5x+16+4x+13 | | 5y=10-5 | | 20r-10r=-10 | | 34.5=2(3.14)r | | Y=x2-4x+7 | | 3x+2(5x-7)=6-7x | | 7v-1=5(v+3) | | −3(n+2)−5=−23 | | -2(v+5)=8v+10 | | 5x-10+4x=x-10 | | -7x+3=-3+7x | | 13y=16=4y=97 | | 4x+9=8x+17 | | 11y-6-12y=-21 | | q-9=15 | | 9/n+2=3/9 | | 4t+6+2t-5t=1+3 | | 2(6+2y)=30 | | 10/3-x=3/4 | | 349.85=220+0.53x | | 4(x+5=3(x-2)-10 | | 9=45*x | | b^2+7=-8b | | (2x+5)/3=11 | | 4k−6=-2k−16−24k-6=-2k-16-2 | | -3(11-10x)-12=3(3+12x) |

Equations solver categories