1/2y+9/4-5/8y-19/4=0

Simple and best practice solution for 1/2y+9/4-5/8y-19/4=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2y+9/4-5/8y-19/4=0 equation:



1/2y+9/4-5/8y-19/4=0
Domain of the equation: 2y!=0
y!=0/2
y!=0
y∈R
Domain of the equation: 8y!=0
y!=0/8
y!=0
y∈R
We calculate fractions
(-2432y^2+9)/256y^2+128y/256y^2+(-160y)/256y^2=0
We multiply all the terms by the denominator
(-2432y^2+9)+128y+(-160y)=0
We get rid of parentheses
-2432y^2+128y-160y+9=0
We add all the numbers together, and all the variables
-2432y^2-32y+9=0
a = -2432; b = -32; c = +9;
Δ = b2-4ac
Δ = -322-4·(-2432)·9
Δ = 88576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{88576}=\sqrt{256*346}=\sqrt{256}*\sqrt{346}=16\sqrt{346}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-16\sqrt{346}}{2*-2432}=\frac{32-16\sqrt{346}}{-4864} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+16\sqrt{346}}{2*-2432}=\frac{32+16\sqrt{346}}{-4864} $

See similar equations:

| 1/2y+21/4-5/8y-43/4=0 | | 1/3x=31/3 | | b/74=-6.8 | | -31=-y/2 | | 0.8x=35 | | 63-2x=76-3x | | x(7−6x)=(1−3x)(1+2x) | | x+9+x/3=2(3x-8)+9 | | 3(u+8)-5=16 | | -b/7=7 | | 4x+9=18x-21 | | (x+90)/25=(x+30)/15 | | 3x-8=-6x+9 | | 6x-16+12=12 | | 4x=10-32+25 | | 4z/12=-4 | | -5+3=-4-x | | -5(-2x+5)=-25 | | -3(x-4)-24=27 | | -3/7v+1/2=-1/3 | | -4a+14+9a=3a-5a | | X(4(2×3x))=36 | | 3+7=3+y | | X+5-3x=6x-8 | | -2/5y-8/3=-9/4 | | 6x-4x+16=-14 | | 0.5+r+2.75=3 | | y/3-3.1=-7.9 | | F(x)=25-4x | | 66^2=x(x+5) | | 5x+9=16x-13 | | 16v-7v=36 |

Equations solver categories