If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/3(-6x-2)=1/9(2x+34)
We move all terms to the left:
1/3(-6x-2)-(1/9(2x+34))=0
Domain of the equation: 3(-6x-2)!=0
x∈R
Domain of the equation: 9(2x+34))!=0We calculate fractions
x∈R
(9x2/(3(-6x-2)*9(2x+34)))+(-3x0/(3(-6x-2)*9(2x+34)))=0
We calculate terms in parentheses: +(9x2/(3(-6x-2)*9(2x+34))), so:
9x2/(3(-6x-2)*9(2x+34))
We multiply all the terms by the denominator
9x2
We add all the numbers together, and all the variables
9x^2
Back to the equation:
+(9x^2)
We calculate terms in parentheses: +(-3x0/(3(-6x-2)*9(2x+34))), so:We get rid of parentheses
-3x0/(3(-6x-2)*9(2x+34))
We multiply all the terms by the denominator
-3x0
We add all the numbers together, and all the variables
-3x
Back to the equation:
+(-3x)
9x^2-3x=0
a = 9; b = -3; c = 0;
Δ = b2-4ac
Δ = -32-4·9·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3}{2*9}=\frac{0}{18} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3}{2*9}=\frac{6}{18} =1/3 $
| 3y+16=68 | | 281-5.75x=95-2.5x | | 2(2.5g-5)=2g-34 | | -9m=m-23 | | g/2-5=-14 | | 4x-20=26 | | 2×y+9=8 | | 0.09(20,000)+0.06x=5000 | | -11x+16=-11x+16 | | 2x-(-9)=4x-5 | | 5x•5=15 | | n+(9×2)=8 | | 19+8n=-7+3(5n+4) | | -4x+12=-15x+78 | | 5=12+x/2 | | -x+6=-13x-18 | | x−0.6x=50 | | F(x)=1/3x^2+x-4 | | 2x-14=4x-5 | | 1+3n+3=-20 | | (2x)+58=90 | | 2-6(1+2v)=4-4v | | (2x)^0+58^0=90 | | -6x+11=3x+9 | | (2x)^0+58=90 | | 2-6(1+3v)=4-4v | | 4=2401^x-33 | | .5x+6x=13x | | -2(2k+5)-5k=8-3k | | 4x-7x+9=x-7+16 | | 0.3(6g-9)+2=-8.2g | | 34p+101p+96=180 |