If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/3(2x+7)=1/6(4-x)
We move all terms to the left:
1/3(2x+7)-(1/6(4-x))=0
Domain of the equation: 3(2x+7)!=0
x∈R
Domain of the equation: 6(4-x))!=0We add all the numbers together, and all the variables
x∈R
1/3(2x+7)-(1/6(-1x+4))=0
We calculate fractions
(6x(-)/(3(2x+7)*6(-1x+4)))+(-3x2/(3(2x+7)*6(-1x+4)))=0
We calculate terms in parentheses: +(6x(-)/(3(2x+7)*6(-1x+4))), so:
6x(-)/(3(2x+7)*6(-1x+4))
We add all the numbers together, and all the variables
6x0/(3(2x+7)*6(-1x+4))
We multiply all the terms by the denominator
6x0
We add all the numbers together, and all the variables
6x
Back to the equation:
+(6x)
We calculate terms in parentheses: +(-3x2/(3(2x+7)*6(-1x+4))), so:We get rid of parentheses
-3x2/(3(2x+7)*6(-1x+4))
We multiply all the terms by the denominator
-3x2
We add all the numbers together, and all the variables
-3x^2
Back to the equation:
+(-3x^2)
-3x^2+6x=0
a = -3; b = 6; c = 0;
Δ = b2-4ac
Δ = 62-4·(-3)·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6}{2*-3}=\frac{-12}{-6} =+2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6}{2*-3}=\frac{0}{-6} =0 $
| 3k²+8k+5= | | 3x+20+3x+20+4x=180 | | 4x-3/2=4x+3/4 | | y=0.5(2)-1 | | 2x-5/2=2x/7 | | -15x+12x-39=42 | | ,-15x+12x-39=42 | | 9^2+2x=x^2-5 | | -2=0.5x-1 | | 31+31+6x-20=180 | | -4x-13x-98=147 | | 180+35+35+x=360 | | 180+35+35+x=230 | | -7x-x-147=69 | | 8d=11d-3 | | x/1.2=10 | | -8x+2x-149=67 | | 8(3w+1)/5=-11w= | | 2x-67-6x=41 | | 8(3w+1)/5=11w= | | x2+(-45)x+350=0 | | x+12x-225=87 | | 5x+30=30;x= | | 4a^2+1=0 | | 1.3a+6=18 | | 13x-24-11x=46 | | 2x-100=100;x | | 2x²+5x+4x-23-5=0 | | 27-m=14 | | (Z+3)×2=y | | 4(x–3)=6(x–4) | | (n/2)-(3n/4)+(5n/6)=21 |