If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/3(2x-1)=1/7(11-8x)
We move all terms to the left:
1/3(2x-1)-(1/7(11-8x))=0
Domain of the equation: 3(2x-1)!=0
x∈R
Domain of the equation: 7(11-8x))!=0We add all the numbers together, and all the variables
x∈R
1/3(2x-1)-(1/7(-8x+11))=0
We calculate fractions
(7x(-)/(3(2x-1)*7(-8x+11)))+(-3x2/(3(2x-1)*7(-8x+11)))=0
We calculate terms in parentheses: +(7x(-)/(3(2x-1)*7(-8x+11))), so:
7x(-)/(3(2x-1)*7(-8x+11))
We add all the numbers together, and all the variables
7x0/(3(2x-1)*7(-8x+11))
We multiply all the terms by the denominator
7x0
We add all the numbers together, and all the variables
7x
Back to the equation:
+(7x)
We calculate terms in parentheses: +(-3x2/(3(2x-1)*7(-8x+11))), so:We get rid of parentheses
-3x2/(3(2x-1)*7(-8x+11))
We multiply all the terms by the denominator
-3x2
We add all the numbers together, and all the variables
-3x^2
Back to the equation:
+(-3x^2)
-3x^2+7x=0
a = -3; b = 7; c = 0;
Δ = b2-4ac
Δ = 72-4·(-3)·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-7}{2*-3}=\frac{-14}{-6} =2+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+7}{2*-3}=\frac{0}{-6} =0 $
| 7.11=2-3g | | 1/2(x+4)-x=-1 | | ‐14n=‐16 | | 6x-26=2(x+1) | | 4x^2−81=0 | | 7-2x-3+3x=x+4 | | 2x+6=-5x=-3(x-2) | | 6(2y+4)-(2y-1)=5 | | -3/c+66=76 | | a+(-3)=12 | | 2x+6=-5x=-3(x-2 | | X2+18x+4=0 | | -2r−13r+9r=6 | | 14+4g=(-30) | | –7y−16=13+15−11y | | (4x-9)(3x+29)°=x | | 10x+3=3(4x‐3) | | 2x-4=x+-8 | | 3x(-x-9)=11 | | x+90=x+127 | | x=3/4x=21 | | 5r-17=2r+3r-10 | | 3x^2−8=2x | | 7(y+2)+3y=(-18.5)+4.5 | | 4x+2=50+x | | 22n-14=58 | | 7+8y=41 | | 6x-48=-36+8x | | 8(–r−13)=12r | | 5h+9-7-3h-5=13 | | 7x3=28x | | 2=4t-1 |