If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/36=k2
We move all terms to the left:
1/36-(k2)=0
We add all the numbers together, and all the variables
-1k^2+1/36=0
We multiply all the terms by the denominator
-1k^2*36+1=0
Wy multiply elements
-36k^2+1=0
a = -36; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-36)·1
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12}{2*-36}=\frac{-12}{-72} =1/6 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12}{2*-36}=\frac{12}{-72} =-1/6 $
| x2/11=8 | | (x+4)+4x+(10x-10)=24 | | u2=225 | | f2=100 | | 2(3x-11)=26 | | 4x-3(5-x)=-(2-x) | | 6+n=3-2n | | -5+p=-2 | | p2=9 | | 3r-7r+8+r=0 | | 8v-4(4v+8)=8 | | 16=n2 | | 4.9x^2-8x+1.8=0 | | k-4=-8 | | x2/8=8 | | -3r+10=15r8 | | 1/7x-17=42 | | m-36=3 | | -10+2x2=52 | | (9+7i)^(2)=32 | | -4=0.66(6x-15)-2x | | 5(x+8)=-11 | | 7+4m+10=15−2m | | N+32=2n | | 7x-3(-2x-8)=-54 | | n+4÷2=-9 | | 121=g2 | | K/2+1-1k=-12k | | 9x-25+4x+12=3x-5 | | 9x+25+4x+12=3x-5 | | -84=12-16n | | 37-6p=7(p-5)+5p |