1/3b+1/4b=1/5

Simple and best practice solution for 1/3b+1/4b=1/5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3b+1/4b=1/5 equation:



1/3b+1/4b=1/5
We move all terms to the left:
1/3b+1/4b-(1/5)=0
Domain of the equation: 3b!=0
b!=0/3
b!=0
b∈R
Domain of the equation: 4b!=0
b!=0/4
b!=0
b∈R
We add all the numbers together, and all the variables
1/3b+1/4b-(+1/5)=0
We get rid of parentheses
1/3b+1/4b-1/5=0
We calculate fractions
(-48b^2)/300b^2+100b/300b^2+75b/300b^2=0
We multiply all the terms by the denominator
(-48b^2)+100b+75b=0
We add all the numbers together, and all the variables
(-48b^2)+175b=0
We get rid of parentheses
-48b^2+175b=0
a = -48; b = 175; c = 0;
Δ = b2-4ac
Δ = 1752-4·(-48)·0
Δ = 30625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{30625}=175$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(175)-175}{2*-48}=\frac{-350}{-96} =3+31/48 $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(175)+175}{2*-48}=\frac{0}{-96} =0 $

See similar equations:

| 2(x+11)+x=-5(x-5)+7x | | 4x2-9=9 | | y/5+15=37 | | 2/3(n-6)=5n+43 | | 3x+5=15x+20 | | 7x=3x–12 | | X+1/3+2x+5/4=2 | | 48t=16t^2+20 | | 2(6k+4)-4(2+2k-1)=14k-1 | | 7^2x=57 | | -9(4n-10)=-2+11(4-4n) | | 25.14=d(-15.3) | | 2(6k+4)-4(2+2k-1)=4+4k | | 2(6k+4)-4(2+2k-1)=4=4k | | 2(6k+4)-4(2+2k-1)=4k-4 | | 2(6k+4)-4(2+2k-1)=18+48k | | P+11p=12(4p+4)-3(1+9p) | | -2(-4-x)=20 | | 3(2+3k)=18 | | -2(a-6)=-(3a-11) | | 31=d+(-1.4 | | -14t^2+56t+60=0 | | (x+47)+(x-14)+(x)=180 | | 3n^2+14+15=0 | | 11x+3=5x-9 | | (x+75)+(x+15)+(x)=180 | | -4x-36=6(7+6x)-x | | 8v=10v-6 | | 9x+45=171 | | 3x+5/16x-2=0 | | 5/8x+6=28-x | | 3.1t-5.8=11 |

Equations solver categories