1/3k+1/2=1/4k

Simple and best practice solution for 1/3k+1/2=1/4k equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3k+1/2=1/4k equation:



1/3k+1/2=1/4k
We move all terms to the left:
1/3k+1/2-(1/4k)=0
Domain of the equation: 3k!=0
k!=0/3
k!=0
k∈R
Domain of the equation: 4k)!=0
k!=0/1
k!=0
k∈R
We add all the numbers together, and all the variables
1/3k-(+1/4k)+1/2=0
We get rid of parentheses
1/3k-1/4k+1/2=0
We calculate fractions
48k^2/48k^2+16k/48k^2+(-12k)/48k^2=0
Fractions to decimals
16k/48k^2+(-12k)/48k^2+1=0
We multiply all the terms by the denominator
16k+(-12k)+1*48k^2=0
Wy multiply elements
48k^2+16k+(-12k)=0
We get rid of parentheses
48k^2+16k-12k=0
We add all the numbers together, and all the variables
48k^2+4k=0
a = 48; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·48·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*48}=\frac{-8}{96} =-1/12 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*48}=\frac{0}{96} =0 $

See similar equations:

| 3k+4=3(k+4/3) | | 1/2(x+6)=4(x-2 | | 5(5f−2)=5(3f+4) | | N-2×180=6n | | -2x+11=44 | | 5x-3x-2x=0 | | 5x/6=150 | | 4+2(x-1)=4-2(x+3) | | 0,4=x/3 | | x(7)+3.6=62.4 | | X+3x-5x=7x-2 | | 12x+1=7x+12 | | 65x-19-2x=18+63x-37 | | 2=0.04x+0.4 | | 1500x-2x^2=0 | | 1500-2x^2=0 | | -(x+3)2x-1=6 | | 3=0.01x+0.3 | | 3=0.01x+.3 | | 6b+21=-6b+21 | | X+5=3(2+x) | | 4y-10y=6 | | 4x+1+17+5x=180 | | x/6+3=12 | | 25^x-1=125(5^3x+1) | | 67=21t+4 | | 10b-33=107 | | -4(3+3b)=-48 | | 3-4(3n-3)=63 | | 3(-3x+4)+x=44 | | 5m/8-6/8+3m=2m | | 4(4b-3)=52 |

Equations solver categories