1/3k+800=1/2k+120

Simple and best practice solution for 1/3k+800=1/2k+120 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3k+800=1/2k+120 equation:



1/3k+800=1/2k+120
We move all terms to the left:
1/3k+800-(1/2k+120)=0
Domain of the equation: 3k!=0
k!=0/3
k!=0
k∈R
Domain of the equation: 2k+120)!=0
k∈R
We get rid of parentheses
1/3k-1/2k-120+800=0
We calculate fractions
2k/6k^2+(-3k)/6k^2-120+800=0
We add all the numbers together, and all the variables
2k/6k^2+(-3k)/6k^2+680=0
We multiply all the terms by the denominator
2k+(-3k)+680*6k^2=0
Wy multiply elements
4080k^2+2k+(-3k)=0
We get rid of parentheses
4080k^2+2k-3k=0
We add all the numbers together, and all the variables
4080k^2-1k=0
a = 4080; b = -1; c = 0;
Δ = b2-4ac
Δ = -12-4·4080·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-1}{2*4080}=\frac{0}{8160} =0 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+1}{2*4080}=\frac{2}{8160} =1/4080 $

See similar equations:

| 5(y+1/3)=45 | | F(0)=1.8x=32 | | -(22-7t/41)=-1 | | u-4=22 | | 92=(3b+5) | | -0.8-1=3.2x+5 | | 105+30=x | | w÷ 5 = 34 | | 60w=90 | | -32-6x=53 | | -2y+21=-33 | | 9x+7x=34=180 | | -4x+9/7=-1 | | 0=–x3–1 | | 6=-z/8 | | 4/5=23x | | w÷5=3/4 | | x(x+12)=136 | | –88=8r–8 | | 6x-4(2x-6)=4 | | -1.8(b-5.8)+-4.4=-7.82 | | 6y-3/4=31/4+27 | | 67-3/4=31/4+2y | | 60-9g=12 | | 6r=-10+15r | | -2(y-10)=8 | | 6^2x+1=49.5 | | 4(t-8)=20=5 | | -5x+2(x+4)=-7 | | 6^2x=1=49.5 | | 14-6p-1=24+6p | | 15/27=x/28-x |

Equations solver categories