1/3k+80=1/2k+120=

Simple and best practice solution for 1/3k+80=1/2k+120= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3k+80=1/2k+120= equation:



1/3k+80=1/2k+120=
We move all terms to the left:
1/3k+80-(1/2k+120)=0
Domain of the equation: 3k!=0
k!=0/3
k!=0
k∈R
Domain of the equation: 2k+120)!=0
k∈R
We get rid of parentheses
1/3k-1/2k-120+80=0
We calculate fractions
2k/6k^2+(-3k)/6k^2-120+80=0
We add all the numbers together, and all the variables
2k/6k^2+(-3k)/6k^2-40=0
We multiply all the terms by the denominator
2k+(-3k)-40*6k^2=0
Wy multiply elements
-240k^2+2k+(-3k)=0
We get rid of parentheses
-240k^2+2k-3k=0
We add all the numbers together, and all the variables
-240k^2-1k=0
a = -240; b = -1; c = 0;
Δ = b2-4ac
Δ = -12-4·(-240)·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-1}{2*-240}=\frac{0}{-480} =0 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+1}{2*-240}=\frac{2}{-480} =-1/240 $

See similar equations:

| a=0.4a | | 4x-4=-6-4x+6 | | -(4x-3)+12x=43 | | -h-9-10=3h+9 | | 0.4=0.08^x | | (2x+7)+(8x-23)=180 | | z+(z-16)-2=-10 | | 34+11x=180 | | -17=-9+4q | | 3/4(8x-12)=4x+11 | | -g=4g−10 | | 5y+18=9(y+6) | | -29=-8v+3(v+7) | | 7r-1=-8+8r | | 3/4(8x-12)=4x-13 | | -7y=-8y-5 | | 5(6-a)=5a-4 | | 8p-10=6p+2 | | x÷-20=7 | | 31/16=g | | 1/3(x+1)=17 | | -7s=13-8s | | 5/3=4985/y | | 2a+15a+(-3a)=1 | | .56(n)=8.69 | | 7(p-1)=84 | | 1/3m+7+2/3m=-2 | | -3-10x=50 | | 9-4q=-q-6 | | (3x-35)+160=360 | | 5x-2=3x+4= | | -4x+10=0+1x |

Equations solver categories