1/3n-1/9=1/6n

Simple and best practice solution for 1/3n-1/9=1/6n equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3n-1/9=1/6n equation:



1/3n-1/9=1/6n
We move all terms to the left:
1/3n-1/9-(1/6n)=0
Domain of the equation: 3n!=0
n!=0/3
n!=0
n∈R
Domain of the equation: 6n)!=0
n!=0/1
n!=0
n∈R
We add all the numbers together, and all the variables
1/3n-(+1/6n)-1/9=0
We get rid of parentheses
1/3n-1/6n-1/9=0
We calculate fractions
(-108n^2)/1458n^2+486n/1458n^2+(-243n)/1458n^2=0
We multiply all the terms by the denominator
(-108n^2)+486n+(-243n)=0
We get rid of parentheses
-108n^2+486n-243n=0
We add all the numbers together, and all the variables
-108n^2+243n=0
a = -108; b = 243; c = 0;
Δ = b2-4ac
Δ = 2432-4·(-108)·0
Δ = 59049
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{59049}=243$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(243)-243}{2*-108}=\frac{-486}{-216} =2+1/4 $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(243)+243}{2*-108}=\frac{0}{-216} =0 $

See similar equations:

| 60=15−5x | | (x-10)(3x+15)=300 | | 5-2(11+p)=1 | | 169=211-w | | 4x+3x-7=6x | | 75=-u+285 | | 60+4x=150+2x | | 8(b+7)=-24 | | 7t-6t-t+4t=12 | | 9m+4=27 | | 6x+7=28x-58 | | 10+2(y-3)=30 | | -0.9x=801 | | 1/4(8x+12)-x=14 | | 8q+12=-84 | | -14-4y=38 | | 169-y=224 | | -13+8+6x=40 | | 28=1/2(6x+8) | | 5c+3=C-12 | | 2+3x=8;2 | | 1/2(x-5)=-2x-5 | | -1=7q÷4 | | 13x-60=90 | | 12j+j-4j=18 | | 5c+3=-12 | | -9p+2=119 | | 6x=8x= | | 13x-60=180 | | 7x+5=7(x+7) | | -6x+7=-4x+5-2x+2 | | 9.6=0.8x |

Equations solver categories