If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/3p+p=48
We move all terms to the left:
1/3p+p-(48)=0
Domain of the equation: 3p!=0We add all the numbers together, and all the variables
p!=0/3
p!=0
p∈R
p+1/3p-48=0
We multiply all the terms by the denominator
p*3p-48*3p+1=0
Wy multiply elements
3p^2-144p+1=0
a = 3; b = -144; c = +1;
Δ = b2-4ac
Δ = -1442-4·3·1
Δ = 20724
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20724}=\sqrt{4*5181}=\sqrt{4}*\sqrt{5181}=2\sqrt{5181}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-144)-2\sqrt{5181}}{2*3}=\frac{144-2\sqrt{5181}}{6} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-144)+2\sqrt{5181}}{2*3}=\frac{144+2\sqrt{5181}}{6} $
| 10(0.4+5g)=4g | | -3(4x-3)=27 | | 12x+3=-3(4x-1) | | 1/3p=48 | | 13=-11+6n | | 14=g+2 | | 9/t-6=4/t+2 | | 48+p=3p | | g1=71*63=43 | | 32=8w+6(w+4) | | a+13=10 | | c=5/9(-4-32 | | 3v=40+5v | | -12+22=-2(x+3) | | x/x+4=3/7 | | x^2-24x-429=0 | | c/5=c-1/4 | | 2(3t-6)=19t+8 | | 6x=5(xx10) | | -6g36=12 | | 14(h)=150 | | x/3=5/30 | | 11c–4c=14 | | e+4=9(6e-7) | | -5.6=0.8x | | 2(3x+1)=4x-9x | | 3=u/18.75 | | 2k+5k=7 | | 0=-0.5x+0.75 | | 0=17x-68 | | -5e=-400 | | 0=1/8x+2 |