1/3q+2/5=1/5q+10

Simple and best practice solution for 1/3q+2/5=1/5q+10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3q+2/5=1/5q+10 equation:



1/3q+2/5=1/5q+10
We move all terms to the left:
1/3q+2/5-(1/5q+10)=0
Domain of the equation: 3q!=0
q!=0/3
q!=0
q∈R
Domain of the equation: 5q+10)!=0
q∈R
We get rid of parentheses
1/3q-1/5q-10+2/5=0
We calculate fractions
125q/375q^2+(-3q)/375q^2+6q/375q^2-10=0
We multiply all the terms by the denominator
125q+(-3q)+6q-10*375q^2=0
We add all the numbers together, and all the variables
131q+(-3q)-10*375q^2=0
Wy multiply elements
-3750q^2+131q+(-3q)=0
We get rid of parentheses
-3750q^2+131q-3q=0
We add all the numbers together, and all the variables
-3750q^2+128q=0
a = -3750; b = 128; c = 0;
Δ = b2-4ac
Δ = 1282-4·(-3750)·0
Δ = 16384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16384}=128$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(128)-128}{2*-3750}=\frac{-256}{-7500} =64/1875 $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(128)+128}{2*-3750}=\frac{0}{-7500} =0 $

See similar equations:

| (2x-5)(x+5)=180 | | p/7-4=6p=-56;p=14;p=70 | | 3x+2-x=11x=9 | | 2(x+5)=-2x-4 | | 54x=79.50 | | 24-6x=-3x | | 3g+2=-10 | | 11-n=-18 | | k*k=400 | | -7=-7(3x+7) | | 3(x-20)=15. | | -4x=2(x+4) | | y=-252 | | 2-1/2n=3n+162−21​ n=3n+16 | | 7x+62x=60 | | -24a-32=-3a-2 | | 6(x+3)=48. | | 12n+6=1.5n+12n-72 | | 8=3f | | x/(-5)=3 | | 4-3x=4-12x | | 0.1/2=x/25 | | 41.2+p=-53.4 | | 1062=6(x+8) | | m*m=121 | | 8(6x+8)-6=202 | | 20+5g=-16-g | | 13m-24=9m | | 1/2x-9=-11-1/2x | | 5^x-2=5 | | 20.5=x=4 | | p−15=–14 |

Equations solver categories