1/3q+8=q-10

Simple and best practice solution for 1/3q+8=q-10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3q+8=q-10 equation:



1/3q+8=q-10
We move all terms to the left:
1/3q+8-(q-10)=0
Domain of the equation: 3q!=0
q!=0/3
q!=0
q∈R
We get rid of parentheses
1/3q-q+10+8=0
We multiply all the terms by the denominator
-q*3q+10*3q+8*3q+1=0
Wy multiply elements
-3q^2+30q+24q+1=0
We add all the numbers together, and all the variables
-3q^2+54q+1=0
a = -3; b = 54; c = +1;
Δ = b2-4ac
Δ = 542-4·(-3)·1
Δ = 2928
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2928}=\sqrt{16*183}=\sqrt{16}*\sqrt{183}=4\sqrt{183}$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(54)-4\sqrt{183}}{2*-3}=\frac{-54-4\sqrt{183}}{-6} $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(54)+4\sqrt{183}}{2*-3}=\frac{-54+4\sqrt{183}}{-6} $

See similar equations:

| 2a-10=a+2.54 | | 8+10m=178 | | (5x-590)+(x/3)=130 | | 144=-72x | | k=6/30 | | 3x-27=5x-25 | | S=5-(2÷3^3t) | | 5x-2.6=8 | | -51=-3+8n | | 21+3m+6+9m-3=0 | | 0=-32x | | 4x=12=80 | | 4x=2x+14.2 | | 3x+(3x-18)=180 | | 0.125x+17=2x-118 | | 6y-2=70 | | 6x=(8x-22) | | 2-1x=8.4-4.2x | | 5x+(5x+66)=146 | | 5x3+7x=14x-19 | | 2(7-7x)+4x=24 | | −6k−7=17 | | 4x+6x-100=-10x | | 2=x^2+3x-26 | | -12-x=-17.2 | | 9y*6=(7y+6)=323 | | 0.2x=-13x-4290 | | 18=16y-7y | | 35x+80=140+40x | | x=(x+8)2 | | 35x-80=140+40x | | 0.5x+13=3x+48 |

Equations solver categories