If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/3q+q=4
We move all terms to the left:
1/3q+q-(4)=0
Domain of the equation: 3q!=0We add all the numbers together, and all the variables
q!=0/3
q!=0
q∈R
q+1/3q-4=0
We multiply all the terms by the denominator
q*3q-4*3q+1=0
Wy multiply elements
3q^2-12q+1=0
a = 3; b = -12; c = +1;
Δ = b2-4ac
Δ = -122-4·3·1
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{33}}{2*3}=\frac{12-2\sqrt{33}}{6} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{33}}{2*3}=\frac{12+2\sqrt{33}}{6} $
| 4(7v+7)=-14+7v | | 4(x-5)-2(x+5)=2x-(x-3) | | 6x-28=-32+6x | | 2p-1=4p-p+4 | | 12=-3x²-6x+3 | | 14-(6-3)=4c-c | | 8+x=2(-4x-5) | | 2=m+43 | | 2x−(3−9x)=11+x | | 9+s/8=24 | | 3(d-5)=2(d+5) | | 1+2x+5x+11=11 | | 7(a+5)-12=3 | | 2(h-5)=18 | | 2(x-4)=-2x+8 | | 112=12+16r | | 8x12=44 | | 9+R=2(4r-8) | | -1=c/4-7 | | x-1+2x-3=17 | | m/11+13=33.4 | | 4/5x=9/5x+10 | | 7+3x−5=−1+2x+5 | | (-c-5)=-1 | | 2/5y-3/4=-3/5y-1/2 | | 3(b−5)=6 | | 20(8-d)+6d=230 | | 2x+30+10=x+28 | | 4s/4+4=3 | | 19.2/(160-x)=20/100 | | 4/5x-10=-90 | | -35=-5(3x+1) |