If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/3s+2/3=4+2/6s
We move all terms to the left:
1/3s+2/3-(4+2/6s)=0
Domain of the equation: 3s!=0
s!=0/3
s!=0
s∈R
Domain of the equation: 6s)!=0We add all the numbers together, and all the variables
s!=0/1
s!=0
s∈R
1/3s-(2/6s+4)+2/3=0
We get rid of parentheses
1/3s-2/6s-4+2/3=0
We calculate fractions
6s/162s^2+(-54s)/162s^2+12s/162s^2-4=0
We multiply all the terms by the denominator
6s+(-54s)+12s-4*162s^2=0
We add all the numbers together, and all the variables
18s+(-54s)-4*162s^2=0
Wy multiply elements
-648s^2+18s+(-54s)=0
We get rid of parentheses
-648s^2+18s-54s=0
We add all the numbers together, and all the variables
-648s^2-36s=0
a = -648; b = -36; c = 0;
Δ = b2-4ac
Δ = -362-4·(-648)·0
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-36}{2*-648}=\frac{0}{-1296} =0 $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+36}{2*-648}=\frac{72}{-1296} =-1/18 $
| 9(x+3+6=33 | | −36−2x=20−4x | | 3x-75-2x=25 | | 10/x+7=2/3 | | 16b-5b-2b-b-5b=15 | | 3.6=2(0.8w+12) | | 5/6c=2/5 | | -9(-8x-2)=-666 | | 3x+75-2x=25 | | 33-h=-12h | | 6(x+3)-9=5x+3(x-5)* | | 5x–3=13x–7 | | 2(n-3)+n=5n-7 | | c5/6=2/5 | | 7x+16=4x+2 | | 3(4x+6)=-38+20 | | 5x+3+3x+7+90=180 | | 11y=193 | | 84=9/5c+32 | | g+3.5=10* | | 10q−q=9 | | .7x-4=5x+18 | | 100x+2=98 | | 1232*1212=x | | 3x+12+69=180 | | 5d,d=—7 | | 84=4(2-2h) | | 7x-3x(x-8)=1/2(8x+6) | | c2=4. | | X-1+8=2x-1 | | 2/5(3x-10)=14 | | 2332x232323=x |