1/3s+s-10+s-20+40=360

Simple and best practice solution for 1/3s+s-10+s-20+40=360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3s+s-10+s-20+40=360 equation:



1/3s+s-10+s-20+40=360
We move all terms to the left:
1/3s+s-10+s-20+40-(360)=0
Domain of the equation: 3s!=0
s!=0/3
s!=0
s∈R
We add all the numbers together, and all the variables
2s+1/3s-350=0
We multiply all the terms by the denominator
2s*3s-350*3s+1=0
Wy multiply elements
6s^2-1050s+1=0
a = 6; b = -1050; c = +1;
Δ = b2-4ac
Δ = -10502-4·6·1
Δ = 1102476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1102476}=\sqrt{4*275619}=\sqrt{4}*\sqrt{275619}=2\sqrt{275619}$
$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1050)-2\sqrt{275619}}{2*6}=\frac{1050-2\sqrt{275619}}{12} $
$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1050)+2\sqrt{275619}}{2*6}=\frac{1050+2\sqrt{275619}}{12} $

See similar equations:

| 23=-4m=2=m | | 36=d2 | | -3(5y-7)-y=-2(y-4 | | -5x-10=2-x=4 | | 24x^2-32=196 | | 256=v2 | | v/9=-8 | | -4(9g)=-252 | | 20x-8=50x+4 | | y=3+8.5•-4 | | 24=-c+3c+4 | | 3+6x=-3x-5 | | 2+5a=42 | | g/9-9.2=-1 | | 2(1-8b)=1/4(8-64b) | | -4m+5-2m=-23 | | R(x)=44x-0.01x^2 | | Y=1.09x+1.37 | | 37=(3x-4)+(2x+1) | | 3/7=(-21x-49 | | (x+3)+(2x+1)+3x=180 | | -3/5x+2/7=35/8 | | 5+22f=17 | | -7/8x+3=87 | | 11/n=5.8 | | 4x^2-80x+279=253 | | 0=16t^2+32t+5.2 | | 9=-6m-21 | | 4x^2-80+279=253 | | 4(n)=-2n2+4 | | 5y-y³=12 | | 13-2c+1=2c+4+3c |

Equations solver categories