1/3x+(x-10)+(x-20)+40=360

Simple and best practice solution for 1/3x+(x-10)+(x-20)+40=360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x+(x-10)+(x-20)+40=360 equation:



1/3x+(x-10)+(x-20)+40=360
We move all terms to the left:
1/3x+(x-10)+(x-20)+40-(360)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We add all the numbers together, and all the variables
1/3x+(x-10)+(x-20)-320=0
We get rid of parentheses
1/3x+x+x-10-20-320=0
We multiply all the terms by the denominator
x*3x+x*3x-10*3x-20*3x-320*3x+1=0
Wy multiply elements
3x^2+3x^2-30x-60x-960x+1=0
We add all the numbers together, and all the variables
6x^2-1050x+1=0
a = 6; b = -1050; c = +1;
Δ = b2-4ac
Δ = -10502-4·6·1
Δ = 1102476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1102476}=\sqrt{4*275619}=\sqrt{4}*\sqrt{275619}=2\sqrt{275619}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1050)-2\sqrt{275619}}{2*6}=\frac{1050-2\sqrt{275619}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1050)+2\sqrt{275619}}{2*6}=\frac{1050+2\sqrt{275619}}{12} $

See similar equations:

| 700-d=675 | | -4(2-x)=0.8(x+38) | | -3-6k(k-8)=93 | | 0.1(x+50)=-2(7-x) | | 10^(x+2)=340 | | 20=66-f | | -6(p+5)=-8(p+5) | | 10^x+2=340 | | 2x^2-10=6 | | 5-18n+6=2 | | (21/25)(10/99)(27/14)=x | | 36r=-2664 | | (2/3x-6/7)(4/5x+8/9)=0 | | 2(m+5)-5(5-m)=3m+7+m-7 | | x-1/x+2=2/3 | | 4x+2=x=8 | | (27x-21x)/4=75.6 | | 3=-5x+8 | | 63-u=8u | | -104=-8(r+5) | | 14y=6y+48 | | 5x+11=-3x-5 | | 0.6p=1.2 | | (-2,7)m=4 | | 5+d÷-2=14 | | 5x+6+3x+90=180 | | -x+8=77/10 | | -6j=10−4j | | 67=18÷x | | 1/6p=-7/8 | | 18=4-x/5 | | p-p^2=0.16 |

Equations solver categories