1/3x+(x-20)+(x-20)+40=360

Simple and best practice solution for 1/3x+(x-20)+(x-20)+40=360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x+(x-20)+(x-20)+40=360 equation:



1/3x+(x-20)+(x-20)+40=360
We move all terms to the left:
1/3x+(x-20)+(x-20)+40-(360)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We add all the numbers together, and all the variables
1/3x+(x-20)+(x-20)-320=0
We get rid of parentheses
1/3x+x+x-20-20-320=0
We multiply all the terms by the denominator
x*3x+x*3x-20*3x-20*3x-320*3x+1=0
Wy multiply elements
3x^2+3x^2-60x-60x-960x+1=0
We add all the numbers together, and all the variables
6x^2-1080x+1=0
a = 6; b = -1080; c = +1;
Δ = b2-4ac
Δ = -10802-4·6·1
Δ = 1166376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1166376}=\sqrt{4*291594}=\sqrt{4}*\sqrt{291594}=2\sqrt{291594}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1080)-2\sqrt{291594}}{2*6}=\frac{1080-2\sqrt{291594}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1080)+2\sqrt{291594}}{2*6}=\frac{1080+2\sqrt{291594}}{12} $

See similar equations:

| 2a-8=3a | | 1/2(6x-10)+12=-11 | | 385=15n | | 3x-3/5=24 | | x-10/4=7 | | 0=-2.29(k-6) | | 11=1x+6 | | 8.69=k/3+6 | | -0.68=j+2.73/2 | | 3(t-9)+12,t=20 | | 15.1+x/6=4.1 | | 18+0.16x=18+0.12x | | v-11.9/4=1.2 | | -1/4(8x+4)+5=-1x | | 3x-28×3x-30=33 | | -m/4-10=10 | | v/2+4.1=5.2 | | -5/3x-2x=11/9 | | 8d+4=19 | | 18×3=9×n | | -6-6(-3m+10)=-6(-2m+4) | | 7-2x-5-4=4 | | 3u+13=-5 | | 2x+3x=15-5x | | 7.4+4x-3.2=-6 | | (4/9)2•27x=0 | | 3=4y=29 | | -4r-9r+6=6(-4r-10) | | r+6/2=-2 | | 5/8e-2=4+1/4e-3/4e | | -9=q/3-11 | | -4-9r+6=6(-4r-10) |

Equations solver categories