If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/3x+(x-20)+40+(x-10)=360
We move all terms to the left:
1/3x+(x-20)+40+(x-10)-(360)=0
Domain of the equation: 3x!=0We add all the numbers together, and all the variables
x!=0/3
x!=0
x∈R
1/3x+(x-20)+(x-10)-320=0
We get rid of parentheses
1/3x+x+x-20-10-320=0
We multiply all the terms by the denominator
x*3x+x*3x-20*3x-10*3x-320*3x+1=0
Wy multiply elements
3x^2+3x^2-60x-30x-960x+1=0
We add all the numbers together, and all the variables
6x^2-1050x+1=0
a = 6; b = -1050; c = +1;
Δ = b2-4ac
Δ = -10502-4·6·1
Δ = 1102476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1102476}=\sqrt{4*275619}=\sqrt{4}*\sqrt{275619}=2\sqrt{275619}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1050)-2\sqrt{275619}}{2*6}=\frac{1050-2\sqrt{275619}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1050)+2\sqrt{275619}}{2*6}=\frac{1050+2\sqrt{275619}}{12} $
| 9.9x+36.75=-10.1x+35.47 | | -2=-14v+2+7v+4 | | 10x-63=x-27 | | 3(m-2)+6(-1+6m=-12 | | 90-3j=6 | | 2y+7=8y-35 | | 2-9x=164 | | 12x-4=10x/10 | | 23=x/8+4 | | y-9.99=4.9 | | 19x+3=39x+5 | | -3x-3=22 | | 3+5x2+3=33 | | 3+x=5x-3 | | -5(-1-4q=) | | 3x+18/7+x+46/6=15 | | −6n−2n=16 | | 0.4t=24 | | (8j+12)=j+151/4 | | -3(-4n-4)=48 | | 12^5x+^2=19 | | (3x+18)/7+(x+46)/6=15 | | -3(5x−2)= | | 5x+3x=6-38 | | 4x30=x-27 | | -4(z-3)=24 | | -5=-1-4q | | (8j+12)=j+ | | 2=12-4x^2 | | 0.25m+15=0.05m+20 | | -3(1+3v)-3=-42 | | 8x-9=4x+23 |