1/3x+(x-36)=180

Simple and best practice solution for 1/3x+(x-36)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x+(x-36)=180 equation:



1/3x+(x-36)=180
We move all terms to the left:
1/3x+(x-36)-(180)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We get rid of parentheses
1/3x+x-36-180=0
We multiply all the terms by the denominator
x*3x-36*3x-180*3x+1=0
Wy multiply elements
3x^2-108x-540x+1=0
We add all the numbers together, and all the variables
3x^2-648x+1=0
a = 3; b = -648; c = +1;
Δ = b2-4ac
Δ = -6482-4·3·1
Δ = 419892
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{419892}=\sqrt{4*104973}=\sqrt{4}*\sqrt{104973}=2\sqrt{104973}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-648)-2\sqrt{104973}}{2*3}=\frac{648-2\sqrt{104973}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-648)+2\sqrt{104973}}{2*3}=\frac{648+2\sqrt{104973}}{6} $

See similar equations:

| 974·140=140·u | | 8-3y=33 | | 64/2^n=7 | | 20x+40=30x+10 | | 3)17x-6.5)=108 | | 10m-4=12m+18 | | F(y)=8/9-3y | | 25^x=225 | | -7(5+4y)=20 | | 3(x+2)-5x=4x+1 | | 7x+7=6x-9=x | | 10=w/3-8 | | -15=-6+3x | | 24=v/2+9 | | 25-7s=-6(4s+9) | | -27+4x=-5+9 | | 0.4x+0.1=0.25x-0.03 | | 15x+5=10x+35=x | | 7(x-5)+9=72 | | 6(4b+7)=-27 | | -x+3x-2=5x-6-x | | 47=5t^+2 | | F(x)=8/9-3x | | 7x+7=10x-38=x | | (2+5s)(5)= | | 9x+4=12x-23=x | | x+¼=-¼ | | h^2+6h=160 | | 35=4+5(n+7) | | 1.5p+5.00=14.00 | | -4(1+6f)=30 | | 8x+2=-15-3x |

Equations solver categories