1/3x+(x-4)=8

Simple and best practice solution for 1/3x+(x-4)=8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x+(x-4)=8 equation:



1/3x+(x-4)=8
We move all terms to the left:
1/3x+(x-4)-(8)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We get rid of parentheses
1/3x+x-4-8=0
We multiply all the terms by the denominator
x*3x-4*3x-8*3x+1=0
Wy multiply elements
3x^2-12x-24x+1=0
We add all the numbers together, and all the variables
3x^2-36x+1=0
a = 3; b = -36; c = +1;
Δ = b2-4ac
Δ = -362-4·3·1
Δ = 1284
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1284}=\sqrt{4*321}=\sqrt{4}*\sqrt{321}=2\sqrt{321}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-2\sqrt{321}}{2*3}=\frac{36-2\sqrt{321}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+2\sqrt{321}}{2*3}=\frac{36+2\sqrt{321}}{6} $

See similar equations:

| -8x+12=86 | | t-13=8/15 | | 3z+36=51 | | 180=52+2^3x+1 | | 8/15+t=1/3 | | 1/5+a=8000 | | 3u=-6/7 | | t+1/3=8/15 | | 16−2t=t+9+4tt= | | t-1/3=8/15 | | 8/15+t=15 | | 5(2+w)-w=10+4(w+4) | | 4y+1-y=5+2y-1 | | 34=x16 | | 8/15+1/3=t | | 1/3+t=8/15 | | 5=1.9x+150 | | y^2+2y^2-4y-8=0 | | 6d-10=3d+8 | | 3/5=x+3 | | x/1-1=1 | | 4x-6=-2x-6 | | 8^-x/17=19 | | 4s-3=2s+7 | | 5r+8=7r-6 | | y-4/5=-1/6 | | 3y-42=-3(y-4) | | -3x-1+2x=-1+8x-9 | | 10+3x-5=0-2x | | −3x−1+2x=−1+8x−9 | | 2(u-6)=4u-24 | | 3x^2+4x-60=7x |

Equations solver categories