1/3x+1/3x+x+x=48

Simple and best practice solution for 1/3x+1/3x+x+x=48 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x+1/3x+x+x=48 equation:



1/3x+1/3x+x+x=48
We move all terms to the left:
1/3x+1/3x+x+x-(48)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We add all the numbers together, and all the variables
2x+1/3x+1/3x-48=0
We multiply all the terms by the denominator
2x*3x-48*3x+1+1=0
We add all the numbers together, and all the variables
2x*3x-48*3x+2=0
Wy multiply elements
6x^2-144x+2=0
a = 6; b = -144; c = +2;
Δ = b2-4ac
Δ = -1442-4·6·2
Δ = 20688
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20688}=\sqrt{16*1293}=\sqrt{16}*\sqrt{1293}=4\sqrt{1293}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-144)-4\sqrt{1293}}{2*6}=\frac{144-4\sqrt{1293}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-144)+4\sqrt{1293}}{2*6}=\frac{144+4\sqrt{1293}}{12} $

See similar equations:

| 2/3v=-8 | | 7x+4=9+6x | | 2.5x=15x | | -6=2+2/3y | | g^2-0.67g=7 | | 3/8(n+5)=7 | | X+3=-9+4x | | 2+x=7x-28 | | 5(x-1)=5(2×-3) | | 3x.x=9x | | 107-y=253 | | -5k^2-5k-24=-6k^2 | | U^2-20u+84=0 | | -3.4+v/4=-9.8 | | w=0.0026(72)(1200)/2 | | X=-2=-1/6x+1/3 | | 278=200-v | | 6/x=8/5 | | 6/7c=42 | | |8m+4|=5 | | -9(x+1)(x+5)=0 | | -16x10^6x=-80 | | -44+2m=34 | | -14+3a+3=2(3a+2) | | 10x+x=58 | | 19x+331=360 | | 5+2(3x-11)=-21 | | -1/3u-2/5=1/2 | | 11h^2+15h+4=0 | | t+21/6=711/12 | | 0=x^2+16x-60 | | 8-t^2=5 |

Equations solver categories